eg. Invest $\$ 1000$ at 4% for 5 years Interest paid at the end of each year and added to the investment.
Year $1 \quad A=1000(1+0.04)^{1}$

$$
A=1040
$$

Year $2 \quad A=1040(1+0.04)$

$$
\begin{aligned}
& \text { OR } \\
& 1000(1+0.04)^{2 / / 1} \\
& (1) 3
\end{aligned}
$$

Year $3 \quad A=1000(1+0.04)^{3}$
Year 5 $A=1000(1+0.04)^{5}$

$$
A=P(1+i)^{t}
$$

$A=$ total amount
$P=$ principal
$i=$ annual interest rate
$t=\operatorname{time}(y r s)$
ex. 1 You borrow $\$ 8000$ at 7.5%
compounded yearly for 5 years. How much will you owe?

$$
\begin{aligned}
A & =P(1+i)^{t} \\
& =8000(1+0.075)^{5} \\
A & =\$ 11,485.03
\end{aligned}
$$

Investments and loans can earn interest at different frequencies.

Invesimens uris v.....
at different frequencies.
annually \rightarrow once/year
Semi annually \rightarrow twice/ year
quarterly $\rightarrow 4 x /$ year
monthly $\rightarrow 12 x /$ year
$(2 x /$ month $)$ semi monthly $\rightarrow 2(12) \rightarrow 24 x /$ year
(5 2weeks) bi weekly $\rightarrow 52 \div 2 \rightarrow 26 x /$ year
weekly $\rightarrow 52 x /$ year
daily $\rightarrow 365 \times /$ year
Adjusted formula for ANY compounding periods

$$
A=P\left(1+\frac{i}{n}\right)^{t_{n}} \quad \begin{aligned}
& n=\begin{array}{l}
\text { of } \\
\text { compounding } \\
\text { periods } / \text { year }
\end{array}
\end{aligned}
$$

ex. 2 Invest \$5000 at 2.5\%
compounded quarterly for 5 years

$$
\begin{aligned}
& i=2.5 \% \rightarrow \frac{0.025}{4}=0.00625=\frac{i}{n} \\
& t=5 \rightarrow 4 \times 5=20=n t \\
& A=5000(1+0.00625)^{20} \\
& A=\$ 5663.54
\end{aligned}
$$

ex. 3 What is the (interest rate) if \$6000 ${ }^{P}$ is invested for 4 years comp. monthly and earns \$1180.89 interest?
and earns \$ $\$ 180.89$ interest?

$$
\begin{aligned}
& \text { TOTAL AMOUNT }=A=\underset{p}{6000}+1180.89 \stackrel{\$}{\neq 7180.89} \\
& A=P\left(1+\frac{(i)}{n}\right)^{t_{n}} \\
& \frac{7180.89}{6000}=\frac{6000}{6000}\left(1+\frac{(i)}{12}\right)^{4 \times 12} \\
& 1.196815=\left(1+\frac{i}{12}\right)^{48} \\
& \sqrt[48]{1.196815}=1+\frac{i}{12} \\
& 1.003750011=1+\frac{i}{12} \\
& \underset{\times 12}{0.003750011}=\frac{i}{12} \\
& 0.04500013=i \\
& 4.5 \%=i
\end{aligned}
$$

Rule of 72 - gives an estimate of the time if will take to double your invest ment

$$
\text { Time (years) }=\frac{12}{\begin{array}{c}
\text { annual interest rate } \\
\text { as a percent }
\end{array}}
$$

ex. 4 Youhave \$4000 at age 20 You want \$16000 at age 32 What interest rate do you need? Is it doable?

What inseresi ruin- mon 0^{-}
Is it doable?
(possible)
$\$ 4000 \times 2=8000 \times 2=\$ 16000$
double twice

$$
32-20=12 \text { years }
$$

double in 6 years $T=\frac{72}{i}$

$$
\begin{aligned}
& 6=\frac{72}{3 i} \\
& i=\frac{72}{6}=12 \%
\end{aligned}
$$

Too high for a "small" amount

$$
P 630 \# 3-6,9-13
$$

