2.3 Dividing Radicals \rightarrow III

Rationalize the Denominator
\rightarrow (no $\sqrt{ }$ in the denominator)
ex. $1 \frac{6}{\sqrt{2}} \times \frac{\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}}{\text { one }}=\frac{\sqrt{6} \sqrt{2}}{2}=3 \sqrt{2}$
2. $\frac{5}{2 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{5 \sqrt{5}}{2(5)}=\frac{5 \sqrt{5}}{10}=\frac{\sqrt{5}}{2}$
3. $\frac{(4+2 \sqrt{7})}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{(4 \sqrt{3}+2 \sqrt{21}}{3}$
ex $\frac{4(8) \sqrt{3}+(2 x) \sqrt{7}}{(2) 1}=4 \sqrt{3}+\sqrt{7}$
$\frac{(8 \sqrt{3}+(3 \sqrt{7})}{2}$
((6) Us TMON
$a+b$ conjugate $a-b$
$1+\sqrt{3} \quad 11 \quad 1-\sqrt{3}$
$\sqrt{2}-5$

$$
" \sqrt{2}+5
$$

4.

$$
\begin{aligned}
\frac{2}{(2+\sqrt{2}) \frac{(2-\sqrt{2})}{(2-\sqrt{2})}} & =\frac{4-2 \sqrt{2}}{\frac{4 \text { one }}{F}-\frac{2 \sqrt{2}+2 \sqrt{2}}{0}-\frac{2}{2}} \\
& =\frac{2(4)-(2) \sqrt{2}}{1(2)} \\
& =2-\sqrt{2}
\end{aligned}
$$

5.

$$
\begin{aligned}
\frac{(5+\sqrt{3})}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} & =\frac{2 \sqrt{3}+\overline{5+3}+\sqrt{3}}{3+\sqrt{3}-\sqrt{3})-1} \\
& =\frac{(6 \sqrt{3}+2)}{2}
\end{aligned}
$$

$$
\begin{array}{r}
=3 \sqrt{3}+4 \\
p 122 \# 6,9,10,13 a(i, i i)
\end{array}
$$

