Remember different forms
mixed to entire

$$
2 \sqrt[3]{5}=\sqrt[3]{2 \cdot 2 \cdot 2 \cdot 5}=\sqrt[3]{40}
$$

entire to mixed

$$
\sqrt{\frac{32}{135}} \rightarrow \frac{(2.20 .22}{(3.3)^{3.5}}=\frac{2.2 \sqrt{2}}{3 \sqrt{3.5}}=\frac{4 \sqrt{2}}{3 \sqrt{15}} \text { OR } \frac{4}{3} \frac{2}{3} \frac{15}{15}
$$

When is a radical defined?

1. $\sqrt{\chi}$ test

$$
\begin{array}{ll}
x=1 \rightarrow \sqrt{1}=16 & \\
x=0 \rightarrow \sqrt{0}=0 & \\
x=-1 \rightarrow \sqrt{-1} \text { Not R Real } &
\end{array}
$$

2.

$$
\begin{array}{rl}
\sqrt{x^{3} \quad \text { TEST }} \begin{array}{rl}
x & x
\end{array} \rightarrow \sqrt{1}=1 \\
x & x \rightarrow \sqrt{0}=0^{2} \\
x & =-1 \rightarrow \sqrt{-1} \text { NoT a R. }
\end{array}
$$

3. $\sqrt{5 x}$

$$
\begin{aligned}
& x=1 \rightarrow \sqrt{5} \\
& x=0 \rightarrow \sqrt{0} \\
& x=-1 \rightarrow \sqrt{-5} x
\end{aligned}
$$

$$
x \geq 0
$$

4. $\sqrt[3]{x}$
$x=1 \rightarrow \sqrt[3]{1} \downarrow \quad x$ is Au Real numbers
5. $\sqrt[3]{x}$
$x=1 \rightarrow \sqrt[3]{1} 乙 \quad x$ is Au Real numbers
$x=0 \rightarrow 3 \sqrt{0} 乙$

$$
\begin{aligned}
& x=0 \rightarrow 3-3-1 \\
& x=-1
\end{aligned} \quad x \in R
$$

5. $\sqrt[4]{-2 x^{3}}$

$$
\begin{aligned}
& x=1 \rightarrow \sqrt[4]{-2} x \\
& x=0 \rightarrow \sqrt[4]{0} \\
& x=-1 \rightarrow \sqrt[4]{2} v
\end{aligned}
$$

Simplify radicals with variables

3. $\sqrt[3]{16 x^{16}}=\sqrt[3]{16} \quad \sqrt[4]{x^{16}}$
3.

$$
\begin{array}{rll}
\sqrt[3]{16 x^{16}} & =\underset{8 \cdot 2}{\sqrt[3]{16}} & \begin{array}{l}
\sqrt[4]{x^{166}} \\
x_{1}^{15} x \\
\sqrt[1]{3}
\end{array} \\
& =2 \sqrt[3]{2} & x^{\frac{5}{5}} \sqrt[3]{x} \\
& =2 x^{5} \sqrt[3]{2 x}
\end{array}
$$

4.

$$
\begin{aligned}
\sqrt{45 a^{7}} & =\sqrt{45} \quad \sqrt{a_{9 \times 5}^{a^{7}}} \\
& =3 \sqrt{a^{\prime 6} a^{\prime}} \\
& =3 a^{3} \sqrt{5 a}
\end{aligned}
$$

$$
\text { p95 \# } 3-8,10,14(2)
$$

