1.6 Exponent Laws and Order of Operations

Reminders of BEDMAS
ex. $1 \frac{3+2}{5}=\frac{5}{5}=1$

$$
\text { 2. } \begin{aligned}
& 12+2(2+4) \\
= & 12+2(6) \\
= & 12+12 \\
= & 24
\end{aligned}
$$

$$
\text { 3. } \begin{aligned}
& 3\left(5-2^{3}\right)^{2} \div 3 \\
= & 3(5-8)^{2} \div 3 \\
= & 3(-3)^{2} \div 3 \\
= & 3(9) \div 3 \\
= & 27 \div 3=9
\end{aligned}
$$

4. $\frac{9^{3} \cdot 9^{5}}{9}=\frac{9^{8}}{9}=9^{7} \quad$ Simplify Calculator

$$
=4,782,969
$$

5. $\left(x^{3} y^{-2}\right)\left(x^{5} y^{4}\right)$

$$
\begin{aligned}
& =x^{3} x^{5} y^{-2} y^{4} \\
& =x^{8} y^{2}
\end{aligned}
$$

6.

$$
\begin{aligned}
& \frac{10 m^{5} b^{7}}{5 m^{2} b^{-3}} \\
= & 2 m^{3} b^{10}
\end{aligned}
$$

7.

$$
\text { a) } \begin{aligned}
\left(8^{1} b^{6}\right)^{\frac{1}{3}} & =8^{1 \times \frac{1}{3}} a^{9 \times \frac{1}{3}} b^{6 \times \frac{1}{3}} \\
& =8^{\frac{1}{3}} a^{\frac{9}{3}} b^{\frac{6}{3}} \\
& =\sqrt[3]{8} \\
& =2 a^{3} b^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \left(9 c^{-4} d^{3}\right)^{\frac{1}{2}} \\
= & 9^{\frac{1}{2}} c^{-4 \times \frac{1}{2}} d^{3 \times \frac{1}{2}} \\
= & 3 c^{-2} d^{\frac{3}{2}} \quad \begin{array}{c}
\text { positive exponents } \\
\text { ONLY }
\end{array}
\end{aligned}
$$

$$
=\frac{3 d^{\frac{3}{2}}}{c^{2}}
$$

ONLY
8. $\left(5^{\frac{1}{3}} \cdot 3^{-\frac{1}{2}}\right)^{6}$ evaluate

$$
\begin{aligned}
& =5^{\frac{1}{3} \times 6} \cdot 3^{-\frac{1}{2} \times 6} \\
& =5^{2} \cdot 3^{-3} \\
& =25 \cdot \frac{1}{3^{3}} \\
& =25 \cdot \frac{1}{27}=\frac{25}{27}
\end{aligned}
$$

9. $\frac{\left(m^{-3} n^{\sqrt{2}}\right)^{-4}}{\left(m^{-4} n^{-5}\right)^{2}}$

Simplify
positive exp. only

$$
=\frac{m^{12}\left[n^{-8}\right.}{\left.m^{4}\right]\left[n^{-6}-8+t 6\right.}
$$

$$
=m^{8} n^{-2}=\frac{m^{8}}{n^{2}}
$$

10.

$$
\begin{aligned}
& 2\left(6 x^{-4} y^{3}\right)\left(5 x^{3} y^{5}\right) \\
= & 2(6)(5)\left(x^{-4} x^{3}\right)\left(y^{3} y^{5}\right) \\
= & 60 x^{-1} y^{8} \\
= & \frac{60 y^{8}}{x}
\end{aligned}
$$

P69 \# 3-7,11(2), 14(3), 21ab

