1.5 Powers and Negative Exponents

Remember

$$
\begin{aligned}
& \rightarrow 5^{2} \div 5^{3}=5^{\square} \\
& \rightarrow \frac{5^{2}}{5^{3}}=\frac{\not \not \subset \times \neq \nmid f}{\neq p \times f \times 5}=\frac{1}{5}
\end{aligned}
$$

So, $x^{-n}=\frac{1}{x^{n}}$ and $\frac{1}{x^{-n}}=x^{n}$
(take reciprocal of the base to make exponent positive)
Evaluate

$$
\begin{aligned}
& \text { Evaluate } \\
& \text { ex.1. } 2^{-4}=\frac{1}{2^{4}}=\frac{1}{16}
\end{aligned}
$$

2. $\left(-\frac{3}{4}\right)^{-2}=\left(-\frac{4}{3}\right)^{2}=\frac{16}{9}$
3. $8^{-\frac{2}{3}}=\frac{1}{8^{\frac{2}{3}}}=\frac{1}{2^{2}}=\frac{1}{4}$
4. $(0.2)^{-3}=\left(\frac{1}{5}\right)^{-3}=5^{3}=125$

$$
\frac{2}{10}=\frac{1}{5}
$$

$\left.-110 \lambda^{-2} / 1 . \lambda^{-2} / 5\right)^{2} 25$
$5 \cdot\left(\frac{18}{15}\right)^{-2}=\left(\frac{6}{5}\right)^{-2}=\left(\frac{5}{6}\right)^{2}=\frac{25}{36}$
reduce to lowest terms

$$
\begin{aligned}
& 6 \cdot \begin{aligned}
\left.81\right|_{-\frac{75}{100}} ^{-0.75} & =81^{-\frac{3}{4}}=\frac{1}{81^{\frac{3}{4}}}=\frac{1}{(\sqrt[4]{81})^{3}} \\
& =\frac{1}{3^{3}}=\left(\frac{1}{27}\right. \\
7 \cdot\left(-\frac{125}{64}\right)^{-\frac{2}{3}} & =\left(-\frac{64}{125}\right)^{\frac{2}{3}} \\
& =\left(\sqrt[3]{\left.-\frac{64}{125}\right)^{2}}\right. \\
& =\left(-\frac{4}{5}\right)^{2} \\
& \left.=\frac{16}{25}\right)^{2}
\end{aligned}
\end{aligned}
$$

$$
\text { p55 \# 4-12, } 14(\text { pich } 4)
$$

