1.4 Powers with Positive Rational Exponents

Remember
$1 . \quad 3^{6} \times 3^{5} \stackrel{\oplus}{=} 3^{11}$
2. $4^{7} \div 4^{2} \xlongequal{=} 4^{5}$
3. $\left(5^{2}\right)^{6} \stackrel{\otimes}{=} 5^{12}$
4. $\left(\frac{2}{3}\right)^{2}=\frac{2^{2}}{3^{2}}=\frac{4}{9}$
no brackets
$5 \cdot 4^{-3}=\frac{1}{4^{3}}$
no negative exponent

True also for fraction exponents

$$
\begin{aligned}
& 8^{\frac{4}{7}} \cdot 8^{\frac{2}{7}}=8^{\frac{6}{7}} \\
& 9^{\frac{4}{3}} \div 9^{\frac{2}{3}}=9^{\frac{2}{3}}
\end{aligned}
$$

If the exponent is a fraction, the denominator portion represents the root.
ex.

$$
\begin{aligned}
& 36^{\frac{1}{2}}=\sqrt{36}=6 \\
& 8^{\frac{1}{3}}=\sqrt[3]{8}=2 \\
& \left(\frac{4}{9}\right)^{\frac{1}{2}}=\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3}
\end{aligned}
$$

$$
\left(\frac{4}{9}\right)^{\frac{1}{2}}=\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3}
$$

Then, $8^{\frac{2}{3}}$ can be $(\sqrt[3]{8})^{2} O R \sqrt[3]{8^{2}}$

$$
\begin{aligned}
& =2^{2}=\sqrt[3]{64} \\
& =4
\end{aligned}
$$

So, $\begin{array}{llll}x^{\frac{m}{n}} \rightarrow & \left(x^{\frac{1}{n}}\right)^{m} \\ & (\sqrt[n]{x})^{m} & & \\ & & \left(x^{m}\right)^{\frac{1}{n}} \\ & \sqrt[n]{x^{m}}\end{array}$
ex.1. $27^{\frac{4}{3}}=\sqrt[3]{27^{4}}$ OR $(\sqrt[3]{27})^{4}$

$$
=3^{4}=81
$$

2. $(-27)^{\frac{4}{3}}=\sqrt[3]{(-27)^{4}}$ OR $(\sqrt[3]{-27})^{4}$

$$
=(-3)^{4}=81
$$

3. $32^{\frac{2}{5}}=(\sqrt[3]{32})^{2}$ or $\sqrt[5]{32^{2}}$
4.

$$
\begin{aligned}
32^{\circ} & =(\sqrt[5]{32}) \text { or } V 2^{2} \\
& =2^{2}=4
\end{aligned}
$$

4. $32^{0.4}$
decimals \Rightarrow change to fraction

$$
0.4=\frac{4}{10}=\frac{2}{5}
$$

$$
32^{\frac{2}{5}}
$$

same as \#3
5. $\left(\frac{4}{25}\right)^{\frac{3}{2}}=\left(\sqrt{\frac{4}{25}}\right)^{3}=\left(\frac{2}{5}\right)^{3}=\frac{8}{125}$
6. $0.36^{1.5}$
decimals \rightarrow change AU to fractions

$$
\begin{array}{ll}
=\left(\frac{9}{25}\right)^{\frac{3}{2}} & 0.36=\frac{36}{100}=\frac{9}{25} \\
=\left(\sqrt{\frac{9}{25}}\right)^{3}=\left(\frac{3}{5}\right)^{3}=\frac{27}{125} & 1.5=1 \frac{1}{2}=\frac{3}{2}
\end{array}
$$

P41 \# $(3-12,14) \rightarrow \min 5$ from each 15

