1.4 Powers with Positive Rational Exponents

Remember $3. \times 3 = 3$ 2. $4^7 \div 4^2 = 4^5$

3. $(5^2)^6 = 5^{12}$

 $4. \quad \left(\frac{2}{3}\right)^2 = \frac{2^3}{3^3} = \frac{4}{9}$

 $5. \quad 4^{-3} = \frac{1}{4^3}$

Single
power

no brackets

I no negative Jexponent

True also for fraction exponents $8^{\frac{4}{7}} \cdot 8^{\frac{2}{7}} = 8$

If the exponent is a fraction, the denominator portion represents the root.

ex. $36^{\frac{1}{2}} = \sqrt{36} = 6$

 $8^{\frac{1}{3}} = 38 = 2$

 $\left(\frac{4}{9}\right)^{\frac{1}{2}} = \sqrt{\frac{4}{9}} = \frac{\sqrt{9}}{\sqrt{9}} = \frac{2}{3}$

$$\left(\frac{4}{9}\right)^{\frac{1}{2}} = \sqrt{\frac{4}{9}} = \sqrt{\frac{3}{9}} = \frac{2}{3}$$

 $8^{\frac{2}{3}}$ can be $(38)^{2}$ OR 38^{2} $= 2^{2} = 364$ = 3 64

 $\lambda_0, \quad \chi_m \longrightarrow (\chi_m)^m \quad \text{or} \quad (\chi_m)^m$ $(\sqrt[m]{\chi})^m \quad \sqrt[m]{\chi_m}$

ex.1. $27^{\frac{4}{3}} = \sqrt[3]{27}$ or $(\sqrt[3]{27})^{\frac{4}{3}}$

 $= 3^{4} = 8$ $= 3 (-27)^{\frac{4}{3}} = \sqrt[3]{(-27)^{4}} \quad \text{OR} \quad (\sqrt[3]{-27})^{4}$

 $=(-3)^4=81$

 $32^{\frac{3}{5}} = \left(\sqrt{32}\right)^2 \quad \text{or} \quad \sqrt{32^2}$

3.
$$32^{2} = (\sqrt{3}2)$$
 or $\sqrt{3}2^{2}$

$$= \sqrt{2} = 4$$

4.
$$32^{\circ}$$
 decimals => change to fraction
 32° $0.4 = \frac{4}{10} = \frac{2}{5}$
Same as #3

$$5. \left(\frac{4}{25}\right)^{\frac{3}{2}} = \sqrt{\frac{4}{25}} = \left(\frac{2}{5}\right)^{\frac{3}{2}} = \frac{8}{125}$$

6. 0.36

decimals > change
$$\frac{AU}{4}$$

to fractions

$$= (\frac{9}{25})^{\frac{3}{4}}$$

$$= (\frac{9}{25})^{\frac{3}{4}} = (\frac{3}{5})^{\frac{3}{4}} + (\frac{27}{125})^{\frac{1}{2}} = \frac{3}{2}$$

$$= (\frac{9}{25})^{\frac{3}{4}} = (\frac{3}{5})^{\frac{3}{4}} + (\frac{27}{125})^{\frac{1}{4}} = \frac{3}{2}$$