Many formulas include exp. $+\log$. investments, loans Many everyday occurrences involve exp+loge growth/decay
here are a few

$$
\frac{\text { future value }}{\text { here are }} \rightarrow F V=\frac{R\left[(1+i)^{n}-1\right]}{i}
$$

$$
\text { Presentralue } \rightarrow P V=\frac{R\left[1-(1+i)^{-n}\right]}{i}
$$ investment

$i=$ interestrate \% per compounding period
$n=\begin{gathered}\text { invest } \\ \text { in }\end{gathered}$ investments
magnitude of an earth quake (Richter Scale - after Charts Richter)

$$
M=\log \left(\frac{I}{S}\right)
$$

$M=$ magnitude
$I=$ intensity sf vibration
$S=$ intensity of a standard earthquake
ex. 1 Chile had an earthquake of magnitude 9.5 in 1960. Calculate the intensity in terms of a standard earthquake.

$$
M=\log \left(\frac{I}{r}\right)
$$

$$
\begin{aligned}
& M=\log \left(\frac{I}{S}\right) \\
& 9.5=\log \left(\frac{I}{S}\right) \\
& 10^{9.5}=\frac{I}{S} \\
& 10^{9.5} S=I \\
& 3 \text { billion S }
\end{aligned}
$$

It was $10^{9.5}$ times as intense.
ex. 2 A person borrows $\$ 15000$ for a car. They can pay $\$ 300$ a month. The loan will be repaid with equal monthly payments at $6 \%$ annual interest, compounded monthly. How many monthly payments will they make?

$$
\begin{aligned}
& P V=\frac{R\left[1-(1+i)^{-n}\right]}{i} \\
& P V=\$ 15,000 \\
& \underset{x 0.005}{15000}=\frac{300\left[1-(1+0.005)^{-n}\right]}{0.005} \\
& i=\frac{6 \%}{12}=0.005 \\
& R=\$ 300 \\
& n=\text { ? } \\
& 75=\underline{300}\left[1-(1.005)^{-x}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \div 300 \quad 300 \\
& 0.25=-1-(1.005)^{-n} . \\
& \frac{-0.75}{-1}=\frac{-}{-1}(1.005)^{-n} \\
& 0.75=\frac{1.005^{-n}}{\log 1.005^{-n}} \\
& \log 0.25=\log 1.005 \\
& \frac{\log 0.75}{\log 1.005}=\frac{-n \log 1.005}{\log 1.005} \\
& -57.68 \cdots=-n \\
& 57.68 \ldots \ldots=n \\
& n \doteq 58 \text { months } \\
& \text { p477 \# 3,4,5,8 }
\end{aligned}
$$

