ex. 1 Solve and verify the solution

$$
\begin{aligned}
& 2 .
\end{aligned}
$$

$$
\begin{aligned}
& \log 6 x=\log (x+6)(x-1) \\
& \log 6 x=\log \left(x^{2}+5 x-6\right) \\
& 6 x=x_{2}^{2}+5 x-6 \\
& \text { FACTOR/FORMULA }
\end{aligned}
$$

$$
\begin{aligned}
6 x & =x^{2}+5 x-6 \\
0 & =x^{2}-x-6 \\
0 & =(x-3)(x+2) \\
x & =3
\end{aligned} \quad \text { FACTOR/FORMUCA }
$$

ex. 3 Using logs to solve exponential equations
a)

$$
\begin{aligned}
12 & =4^{x} \\
\log _{4} 12 & =\log _{4} 4^{x} \leftarrow(7.4!) \\
\log _{4} 12 & =x \\
\frac{\log 12}{\log 4}=x \quad \text { change to } & \log _{4} \\
1.79 & =x
\end{aligned}
$$

b) $\quad 3^{x+1}=6^{x} \rightarrow \begin{aligned} & \text { cannot use } \log _{6} \text { since } \\ & \text { the left side has an } \\ & \text { exponent with variable }\end{aligned}$ exponent with variable
\rightarrow use common log.
\rightarrow laws - power
\rightarrow dist. property
\rightarrow gather like parts
$\log 3=x \log 6-x \log 3 \rightarrow$ factor out x

$$
\begin{array}{ll}
\log 3= & \rightarrow \text { factor out } x \\
n & \log \ln \ln -\log 3)
\end{array} \text { quotient } \operatorname{low} \text { Oval. }
$$

$$
\begin{aligned}
& \log 3=x(\log 6-\log 3) \rightarrow \text { quastient low OR eval. } \\
& \log 3=x(\log 2) \\
& \frac{\log 3}{\log 2}=x \leftarrow \text { use calc. } \\
& 1.58=x
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{36}{3} & =\frac{3}{3}\left(2^{x+1}\right) \\
12 & =2^{x+1} x+\log _{2} \\
\log _{2} 12 & =\log _{2} 2^{x+1} \\
\log _{2} 12 & =x+1 \\
\log _{2} 12-1 & =x \\
\frac{\log _{12}}{\log _{2}}-1 & =x \quad \text { just like } \\
2.58 & =x
\end{aligned} \quad \text { use cale. }
$$

$$
p 466 \# 3-5,7 a, 9,11,12(2), 13
$$

