ex. | Solve and verify the solution

$$log_3 \frac{9x}{x} + log_3 \frac{x}{x} = 4$$

product

 $y_{x>0}$
 $y_{x>0}$
 $y_{x>0}$
 $y_{x>0}$

When x is defined

 $y_{x>0}$
 $y_{$

2.
$$\log 6x = \log (x+6) + \log (x-1)$$
 $defined \rightarrow bx > 0$
 $x > 0$
 $x > 0$
 $x > 0$
 $x > -6$
 $x > 1$
 $\log 6x = \log (x+6)(x-1)$
 $\log 6x - \log (x^2 + 5x - 6)$
 $\log 6x = x^2 + 5x - 6$

FACTOR/FORMULA

$$6x = x^{2} + 5x - 6$$

$$0 = x^{2} - x - 6$$

$$0 = (x - 3)(x + 2)$$

$$\boxed{\chi = 3}$$

ex.3 Using logs to some exponential equations

a)
$$12 = 4^{x}$$
 change to log_{4}
 $log_{4} | 2 = log_{4} 4^{x} = (7.4!!)$
 $log_{4} | 2 = x$
 $log_{4} | 4 = x$
 $log_{4} | 4 = x$
 $log_{4} | 4 = x$

log 3 =
$$\chi$$
 (log 6 - log 3) \Rightarrow quotient law OR eval.
log 3 = χ (log 2)
 $\log 3 = \chi$ — use cale.
 $\log 2$
 $1/.58 = \chi$

c)
$$\frac{36}{3} = \frac{3(2^{x+1})}{3}$$
 $|2 = 2^{x+1}| \rightarrow log_2$
 $log_2 |2 = log_2 = x+1$
 $log_2 |2 - 1 = x$
 $log_1 |2 - 1 = x$
 $log_2 |2 - 1 = x$
 $log_2 |2 - 1 = x$
 $log_2 |2 - 1 = x$
 $log_3 |3 - 1 = x$
 $log_4 |3 - 1 = x$
 log_4