4.2 Adding and Subtracting Polynomials

Like Terms - in terms of algeter tiles, must be the same sins and shape
eg.

$2 x+2$
(+
$-x-1-x^{2}$ V
$x+1-x^{2}$ expression

$$
-x^{2}+x+1
$$

Like Terms have the same variables) with the same exponents)

$$
\text { eg. 1. } 2 e, 4 e,-3 e \rightarrow L I K E
$$

2. $8\left(x^{2}\right),-5 x^{(2)}, \frac{1}{2} \rightarrow$ NOT LIKE
3. $p q, q q p \rightarrow L K E$
4. 2 , $2,+$ NOT LIKE

ONLY LIKE TERMS may be added or subtracted!
ex. 1. $2 \underline{\underline{x}}+3 \underline{x}=5 x$
2. $4 a-a=3 a$
3. $5 m \bar{m}-2 p+3 m \bar{m} \underline{m}$

$$
\begin{aligned}
& =5 m+3 m-2 p-6 p \\
& =8 m-8 p
\end{aligned}
$$

4. $2 t^{2}+4 t-8 t=-7 t^{2}$

$$
\begin{aligned}
& =2 t^{2}-7 t^{2}+4 t-8 t \\
& =-5 t^{2}-4 t
\end{aligned}
$$

5. $8 c-3 m-5 c+7 m$

$$
\begin{aligned}
& =8 c-5 c-3 m+7 m \\
& =3 c+4 m
\end{aligned}
$$

6. $(2 a+5)+(3 a-2)$

$$
=2 a+5+3 a-2
$$

wipe out the (

$$
=\sigma_{1}+2
$$ like

$$
\begin{aligned}
= & 5 a+3 \\
\text { 7. } & (a-2)+(4 a-6) \\
= & a-2+4 a=6 \\
= & 5 a-8
\end{aligned}
$$

*) When subtracting polynomials, we need to think about adding opposites

$$
\begin{aligned}
1 & \rightarrow-1 \\
-a & \rightarrow a \\
a+1 & \rightarrow-a-1 \\
2 t-1 & \rightarrow-2 t+1
\end{aligned}
$$

8.

$$
\begin{aligned}
& (3 x-4)-(2 x+3) \\
= & 3 x-4-2 x-3 \\
= & x-7
\end{aligned}
$$

$$
\text { 9. } \begin{aligned}
&\left(5 x^{2}-x\right)\left(2 x^{2}-3 x\right) \\
&= \frac{5 x^{2}}{\text { change signs }} \\
&=x-2 x^{2}+3 x
\end{aligned}
$$

$$
\begin{aligned}
& =3 x^{2}+2 x \ll \\
& 10 \cdot\left(6 x^{2}+4\right) \pi\left(\pi x^{2}+2\right) \\
& =\frac{6 x^{2}+4-x^{2}-2}{}=5 x^{2}+2 \\
& p 107 \# 1,2,5,6,8-10,13-17,19
\end{aligned}
$$

