Degree of term - the sum of the exponents of the variables in one term.

$$
\begin{array}{ll}
\text { eg. } 2 b^{3} & \text { degree }=3 \\
6 a^{4} b^{7} & \text { dequeue }=4+7=11 \\
8 c^{2} t^{1} & \text { degree }=2+1=3 \\
43 & \text { degree }=0 \otimes \text { no variables }
\end{array}
$$

Degree of a polynomial - the degree of the highest degree term in a polynomial.

$$
\begin{aligned}
& 4 x^{2}+x^{\prime} \quad d y=2 \\
& \text { Thijhert } \\
& f^{(21)}+h^{(4)}-7 z^{(1)} \quad d y=4 \\
& m^{3}-8 t^{3} l^{3}+3 z^{(6)}-4 a^{4} b^{(1)} \\
& 2
\end{aligned}
$$

$$
d y=6
$$

Algebra Tiles

represent

$$
2 x+4
$$

represent
"O"

$$
\begin{aligned}
& \operatorname{man}_{-2} \frac{\square}{2}=0
\end{aligned}
$$

equal amount of t and - of the same tile
Substitution and Evaluate

1. $3 x+5$
i) $x=2$

$$
3(2)+5=11
$$

ii) $x=-2$
$3(-2)+5=-1$
2. $x^{2}+2 x$
i) $x=1$

$$
(1)^{2}+2(1)
$$

$$
\begin{aligned}
& (1)^{2}+2(1)=3 \\
& =1+2=3
\end{aligned}
$$

ii)

$$
\begin{aligned}
x=-3 & (-3)^{2}+2(-3) \\
& =9+(-6) \\
& \text { or } 9-6=3
\end{aligned}
$$

3. $-2 x^{2}+x-3$

$$
\begin{aligned}
& x=-2 \\
& -2(-2)^{2}+(-2)-3 \\
& =-2(4)+(-2)-3 \\
& =-8-2-3 \\
& =-13 \\
& \text { p101 \# 3, 7, 8, 11, 12, 15, 17 } \\
& \text { finsh } \underline{\underline{q}} \\
& \text { p99 \# 6,7,8 only ab }
\end{aligned}
$$

