<u>Worksheet 4.3</u> <u>Using Acid Strength Tables</u>

Acid-base reactions can be considered to be a competition for protons. A stronger acid can cause a weaker acid to act like a base. Label the acids and bases. Complete the reaction. State if the reactants or products are favoured. HPO₄²⁻ SO_4^{2-} + 1. HSO₄⁻ + ⊉ H₂PO₄⁻ Acid Base Base Acid Products are favoured as HSO4⁻ is a stronger acid than H₂PO4⁻ 2. HCN + H₂O ₹ $H_{3}O^{+}$ + CN⁻ Acid **Base** Acid **Base** Reactants are favoured as H₃O⁺ is a stronger acid than HCN. 3. HCO₃⁻ + H₂S H₂CO₃ HS⁻ ⊉ +Base Acid Acid **Base** Reactants are favoured as H₂CO₃ is a stronger acid than H₂S HPO₄²⁻ 4. $NH4^+$ + $H_2PO_4^-$ NH₃ ₽ + Acid Acid Base Base Reactants are favoured as H₂PO₄⁻ is a stronger acid than NH₄⁺ 5. NH₃ + H₂O ₽ NH_4^+ + OH-Base Acid Acid Base Reactants are favoured as OH⁻ is a stronger base than NH₃ HPO₄²⁻ H₂PO₄¹⁻ NH₃ 6. + ₽ NH_4^+ + Acid Base Base Acid Products are favoured as NH₃ is a stronger base than HPO₄²⁻ 7. HCO₃⁻ HF H₂CO₃ F⁻ + ₹ + Acid Base Acid **Base** Products are favoured as HF is a stronger acid than H₂CO₃

Worksheet 4.4

Acid and Basic Anhydrides

Classify each formula as an acid anhydride, basic anhydride, strong acid, weak acid, strong, or weak base. For each formula write an equation to show how it reacts with water. For anhydrides write two equations.

Formula	Classification	Reaction		
12. Na ₂ O	basic anhydride	Na ₂ O +	$H_2O \ \rightarrow$	2NaOH
13. CaO	basic anhydride	CaO +	$\rm H_2O \ \rightarrow$	Ca(OH)2
14. SO ₃	acid anhydride	SO ₃ +	$H_2O \ \rightarrow$	H_2SO_4
15. CO ₂	acid anhydride	CO ₂ +	$\rm H_2O \ \rightarrow$	H ₂ CO ₃
16. SO ₂	acid anhydride	SO ₂ +	$H_2O \ \rightarrow$	H_2SO_3
17. HCl	strong acid	HCl +	$H_2O \ \rightarrow$	H_3O^+ + Cl^-
18. NH ₃	weak base	NH ₃ +	H ₂ O \leftrightarrows	$\mathbf{NH4}^{+} + \mathbf{OH}^{-}$
19. NaOH	strong base	NaOH	\rightarrow Na ⁺	+ OH ⁻
20. HF	weak acid	HF +	H ₂ O ≒	$H_3O^+ + F^-$
21. H ₃ PO ₄	weak acid	H3PO4 +	H ₂ O ≒	H_3O^+ + $H_2PO_4^-$