Name:

Partner:

AP Physics C M. Lam

Rolling Motion Lab

Block:

Objective

Determine the equation for the rotational inertia of a solid sphere

Introduction

- 1. The rotational inertia for a solid sphere, along with many other common shapes, can be modelled by the equation $I = kMR^2$ where *k* is a dimensionless constant. What is *k* for a solid uniform sphere?
- 2. Describe the energy transfers involved with a sphere rolling without slipping down a ramp
- 3. Determine the velocity as a function of height for a uniform solid sphere rolling down a ramp.

Experimental Method

Set up the following apparatus by securing approximately 1 m of Hot Wheels track and a BeeSpi to a wooden board.

Using a BeeSpi photogate timer, determine the value of the constant *k* in the equation for the equation $I = kMR^2$ for the rotational inertial for a uniform solid sphere. Be sure to address how experimental uncertainty could be reduced.

Data

Include a table of the raw data. Include all calculated data for the linearized plot.

Analysis and Discussion

Determine the constant equation for the rotational inertia of a solid sphere. Your report should include the following:

- A plot of the original data
- A linearized plot
- The equation of your best fit line
- The slope of your best fit line (include units)
- The equation for the rotational inertia of a uniform solid sphere including the value of the constant *k* as determined from the slope of your best fit line
- The theoretical constant k and percent error

Component	Criterion	Weight	Mark
General	Complete word-processed lab report with proper structure and formatting	1	
Experimental Method	Experimental method which implements a method to reduce uncertainty	1	
Data	Data quality and presentation	2	
Analysis and Discussion	Plot of the original data	1	
	Linearized plot	1	
	Slope of the linearized plot with correct units	1	
	Equation for the rotational inertia of a uniform solid sphere including the experimental value of the constant k	1	
	Theoretical value of the constant k and percent error	1	
Conclusion	At least two significant sources of error	1	
TOTAL		10	