Physics 12 M. Lam

Collisions Simulation

Block:

When objects move, they have momentum. Momentum, p, is the product of an object's mass and velocity. During a collision objects transfer momentum to each other, resulting in different motions than before the collision. In this activity you will study the motion colliding objects.

Objective

Investigate the momentum before and after a collision for i) elastic collisions and ii) inelastic collisions

Website: http://phet.colorado.edu

Simulations > Physics > Motion > Collision Lab

- Select "Intro" from the main menu
- · Check "More Data"

Part 1: Elastic Collisions

	Elasticity	100%
$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$	Inelastic	Elastic

1. <u>Prior to simulating the collisions</u>, fill out the mass and initial velocity columns. Simulate the four elastic collisions described below and complete the rest of the table.

			Initial		Final			
#	m 1	m 2	V 1i	V 2i	p total	V 1f	V 2f	p total
1	2.0 kg	2.0 kg	1.5 m/s		0 kg·m/s			
2	1.5 kg	3.0 kg		–1.0 m/s	0 kg·m/s			
3	1.0 kg	2.0 kg	2.0 m/s	0.0 m/s				
4	3.0 kg		2.0 m/s	–1.0 m/s	4.0 kg·m/s			

2. Two objects with the same mass move toward each other with the same speed and experience an elastic collision. Compare the **final velocities** (speed and direction) of each object to their **initial velocities**.

3. A less-massive moving object has an elastic collision with a more-massive object that is not moving. Compare the **final velocity** (speed and direction) of the less-massive object to its **initial velocity**.

Part 2: Inelastic Collisions

Elasticity	0%
Inelastic	Elastic

$$m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f$$

1. <u>Prior to simulating the collisions</u>, fill out the mass and initial velocity columns. Simulate the four inelastic collisions described below and complete the rest of the table.

			Initial		Final		
#	m 1	m 2	V 1i	V 2i	p total	Vf	p total
1	2.0 kg	2.0 kg	1.5 m/s	0			
2	1.5 kg	3.0 kg	1.5 m/s	–0.75 m/s			
3	1.0 kg	3.0 kg	2.0 m/s	0.2 m/s			
4	1.0 kg		2.5 m/s	–2.0 m/s	–0.5 kg·m/s		

- 2. Two objects moving toward each other with **different** momentums experience an inelastic collision. In which direction will both objects travel after the collision?
- 3. A less-massive object is moving in the same direction as a more-massive object, but with a higher speed. They experience an inelastic collision. Compare the **final speed** of the more-massive object to its **initial speed**.
- Objects 1 has half the mass of object 2 and the objects move toward each other and experience an inelastic collision. If both objects do **not** move after the collision compare the velocity of **both** objects **before** the collision.
- 5. Show **mathematically** the total momentum before the collision in trial #1 is conserved after the collision.
- 6. Compare the four elastic collisions with the four inelastic collisions. List any similarities and differences that you notice. How would you describe elasticity?