Rotational Inertia Calculations

Uniform rod of mass M and length L about its center

Determine the linear mass density λ of the rod.

Divide the rod into small segments of length $d x$. Take one of these infinitesimally small segments of the rod located a
 distance x from the center, where $x=0$.

Determine the mass $d m$ of this segment.

Determine the rotational inertia $d I$ of this segment for an axis perpendicular to the rod and through its center of mass.

Integrate to get the rotational inertia I of the rod due to all the segments.

Uniform rod of mass M and length L about one end

Thin loop of mass M and radius R (or thin cylindrical shell)

Uniform solid disk of mass M and radius R (or uniform solid cylinder)

Determine the area mass density σ of the disk.

Divide the disk into thin loops of width $d r$. Take one of these infinitesimally thin loops with radius r.

Determine the area $d A$ of this loop.

Determine the mass $d m$ of this loop.

Determine the rotational inertia $d I$ of this loop.

Integrate to get the rotational inertia I of the disk due to all the loops.

Uniform spherical shell of mass M and radius R

Determine the area mass density σ of the spherical shell.

Divide the shell into thin loops of width $d s$. Take one of these infinitesimally thin loops with radius r.

Determine the radius of this loop r in terms of ϕ.

Determine the width $d s$ of this loop in terms of $d \phi$.

Determine the area $d A$ of this loop.

Determine the mass $d m$ of this loop.

Determine the rotational inertia $d I$ of this loop.

Integrate to get the rotational inertia I of the spherical shell due to all the loops.

Uniform Solid Sphere of mass M and radius R

Determine the volume mass density ρ of the sphere.

Divide the sphere into thin spherical shells of thickness $d r$. Take one of these infinitesimally thin spherical shells with radius r.

Determine the volume $d V$ of this spherical shell.

Determine the mass $d m$ of this spherical shell.

Determine the rotational inertia $d I$ of this spherical shell.

Integrate to get the rotational inertia I of the sphere due to all the spherical shells.

