Dynamics

Forces

- Gravitational force (weight): a long-range force exerted on a body by the pull of the earth.

$$
F_{g}=m g
$$

- Normal force: When an object rests or pushes on a surface, the surface exerts a push on it that is directed perpendicular to the surface.

- Friction force: In addition to the normal force, a surface may exert a frictional force on an object, directed parallel to the surface, in the direction that opposes sliding.
- If an object is at rest (static):

$$
F_{f} \leq \mu_{s} F_{N}
$$

On a microscopic level, even smooth surfaces are rough; they tend to catch and cling.

No applied force,
box at rest.
No friction: $f_{\mathrm{s}}=0$

Weak applied force, box remains at rest. Static friction: $f_{\mathrm{s}}<\mu_{\mathrm{s}} n$

Stronger applied force, box just about to slide.

Static friction: $f_{\mathrm{s}}=\mu_{\mathrm{s}} n$

Box sliding at constant speed. Kinetic friction:
$f_{\mathrm{k}}=\mu_{\mathrm{k}} n$

- Spring force: An ideal stretched or compressed spring exerts a restoring force directly proportional to the spring's displacement from its equilibrium position (Hooke's law):

$$
F_{s}=k x
$$

(a)

A compressed spring exerts a pushing force on an object.
(b) A stretched spring exerts
a pulling force on an object.

Newton's Laws of Motion

- Newton's First Law: If all the forces acting on a body are balanced, then the object will not change speed or direction.

$$
\vec{F}_{\mathrm{net}}=0 \Leftrightarrow \vec{a}=0
$$

- Newton's Second Law: If there is an unbalanced force acting on an object, it will accelerate in the direction of the net force in inverse proportion to its mass.

$$
\vec{F}_{\mathrm{net}}=m \vec{a}
$$

$$
\sum F_{x}=m a_{x} \quad \sum F_{y}=m a_{y} \quad \sum F_{z}=m a_{z}
$$

- Newton's Third Law: If body A exerts a force on body B (an "action"), then body B exerts an equal force back upon body A in the opposite direction (a "reaction").

$$
\vec{F}_{A \text { on } B}=-\vec{F}_{B \text { on } A}
$$

(a) The forces acting on the apple
(b) The action-reaction pair for
the interaction between the
apple and the earth
(c) The action-reaction pair for the interaction between the apple and the table

Action-reaction pairs always represent a mutual interaction of two different objects.
(d) We eliminate one of the forces acting on the apple

Table removed

The two forces on the apple CANNOT be an action-reaction pair because they act on the same object. We see that if we eliminate one, the other remains.

Example
A 2 kg box is initially at rest on a horizontal surface. A force given by $F(t)=6 t^{2}$ is applied parallel to the surface where F is in Newtons and t is in seconds.
a) Determine the velocity of the box as a function of time if the surface is frictionless.
b) Determine the velocity of the box as as function of time if the coefficients of kinetic and static friction are 0.4 and 0.6 respectively.

Drag Force

- Drag is a resistive force of a fluid
- Drag points opposite the direction of motion.
- Terminal velocity is the constant
velocity attained when drag force is

Terminal velocity is the constant
velocity attained when drag force is
 equal to the force of gravity.

- Drag increases in magnitude as the object's speed increases.
- For small objects moving at very low speeds, the magnitude of the drag force is approximately proportional to the body's speed.

$$
F_{D}=b v
$$

- For other objects, the magnitude of the drag force is approximately proportional to the square of the speed.

$$
F_{D}=C v^{2}
$$

- The drag coefficients b and C in the above equations depend on the size and shape of the body and the properties of the fluid.
- Apply Newton's second law and solve a differential equation to get velocity as a function of time.

Acceleration versus time

Velocity versus time

Position versus time

Example

A metal ball of mass m is dropped at the surface of a bucket of oil and is allowed to fall to the bottom. The drag force is given by the equation $F_{D}=b v$.
a) What is the terminal velocity of the metal ball?
b) What is the velocity as a function of time?
c) What is the position as a function of time?

