Vector Arithmetic

Unit Vectors

- A unit vector is a vector that has a magnitude of 1 and is used to describe a direction.
- The standard unit vectors in the direction of the x, y and z axes of a three-dimensional Cartesian coordinate system are $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$.

The unit vectors $\hat{\boldsymbol{\imath}}$ and $\hat{\boldsymbol{J}}$ point in the directions of the x - and y-axes and have a magnitude of 1 .

- We can write a vector \vec{A} in terms of its components as

$$
\vec{A}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}
$$

Example

Write each vector in the figure below in terms of the unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$.

Vector Addition

- Using unit vectors, we can express the vector sum \vec{R} of two vectors \vec{A} and \vec{B} as follows:

$$
\begin{aligned}
\vec{R} & =\vec{A}+\vec{B} \\
& =\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}\right)+\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}\right) \\
& =\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}}+\left(A_{z}+B_{z}\right) \hat{\mathbf{k}}
\end{aligned}
$$

Example
Given two vectors
$\vec{A}=3 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and $\vec{B}=-\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$,
a) determine $\vec{A}+\vec{B}$
b) determine $\vec{B}-\vec{A}$

Dot (Scalar) Product

- The dot product of two vectors \vec{A} and \vec{B} is defined by

$$
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta
$$

where $|\vec{A}|$ denotes the magnitude of \vec{A} and θ is the angle between \vec{A} and \vec{B}.

- The dot product is thus the magnitude of one vector multiplied by the component of a second vector in the direction of the first.
- Note that the dot product of two perpendicular vectors is zero.

$$
\begin{aligned}
& \hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1 \\
& \hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=0
\end{aligned}
$$

- Using unit vectors, we can express the dot product of two vectors \vec{A} and \vec{B} as follows:

$$
\begin{aligned}
\vec{A} \cdot \vec{B}= & \left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}\right) \cdot\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}\right) \\
= & A_{x} \hat{\mathbf{i}} \cdot B_{x} \hat{\mathbf{i}}+A_{x} \hat{\mathbf{i}} \cdot B_{y} \hat{\mathbf{j}}+A_{x} \hat{\mathbf{i}} \cdot B_{z} \hat{\mathbf{k}} \\
& +A_{y} \hat{\mathbf{j}} \cdot B_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}} \cdot B_{y} \hat{\mathbf{j}}+A_{y} \hat{\mathbf{j}} \cdot B_{z} \hat{\mathbf{k}} \\
& +A_{z} \hat{\mathbf{k}} \cdot B_{x} \hat{\mathbf{i}}+A_{z} \hat{\mathbf{k}} \cdot B_{y} \hat{\mathbf{j}}+A_{z} \mathbf{k} \cdot B_{z} \hat{\mathbf{k}} \\
= & A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
& \vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

- Applications of the dot product:
- $W=\vec{F} \cdot \vec{d}$
- $\Phi_{B}=\vec{B} \cdot \vec{A}$

Example
Given two vectors
$\vec{A}=3 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and $\vec{B}=-\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$,
a) determine $\vec{A} \cdot \vec{B}$
b) determine $\vec{B} \cdot \vec{A}$

Cross (Vector) Product

- The cross product of two vectors \vec{A} and \vec{B} is defined by a vector with a direction perpendicular to both \vec{A} and \vec{B} and a magnitude equal to

$$
|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta
$$

where $|\vec{A}|$ denotes the magnitude of \vec{A} and θ is the angle between \vec{A} and \vec{B}.

- The magnitude of the cross product is thus the magnitude of one vector multiplied by the perpendicular component of a second vector.
- Note that the cross product of two parallel vectors is zero.
- The direction of the cross product
 is given by the right-hand rule.
- Applying the definition of the cross product to the unit vectors, we get
$\hat{\mathbf{i}} \times \hat{\mathbf{i}}=\mathbf{0}$
$\hat{\mathbf{j}} \times \hat{\mathbf{i}}=-\hat{\mathbf{k}}$
$\hat{\mathbf{k}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}}$
$\hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}}$
$\hat{\mathbf{j}} \times \hat{\mathbf{j}}=\mathbf{0}$
$\hat{\mathbf{k}} \times \hat{\mathbf{j}}=-\hat{\mathbf{i}}$
$\hat{\mathbf{i}} \times \hat{\mathbf{k}}=-\hat{\mathbf{j}}$
$\hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}}$
$\hat{\mathbf{k}} \times \hat{\mathbf{k}}=\mathbf{0}$
- Using unit vectors, we can express the cross product of two vectors \vec{A} and \vec{B} as follows:

$$
\begin{aligned}
\vec{A} \times \vec{B}= & \left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}\right) \times\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}\right) \\
= & A_{x} \hat{\mathbf{i}} \times B_{x} \hat{\mathbf{i}}+A_{x} \hat{\mathbf{i}} \times B_{y} \hat{\mathbf{j}}+A_{x} \hat{\mathbf{i}} \times B_{z} \hat{\mathbf{k}} \\
& +A_{y} \hat{\mathbf{j}} \times B_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}} \times B_{y} \hat{\mathbf{j}}+A_{y} \hat{\mathbf{j}} \times B_{z} \hat{\mathbf{k}} \\
& +A_{z} \hat{\mathbf{k}} \times B_{x} \mathbf{i}+A_{z} \mathbf{k} \times B_{y} \mathbf{j}+A_{z} \mathbf{k} \times B_{z} \mathbf{k}
\end{aligned}
$$

$$
\vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}
$$

- The cross product can be expressed in determinant form as

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

- Applications of the cross product:
- $\vec{\tau}=\vec{r} \times \vec{F}$
- $\vec{F}_{B}=q \vec{v} \times \vec{B}$
- $\vec{L}=\vec{r} \times \vec{p}$

Example
Given two vectors
$\vec{A}=3 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ and $\vec{B}=-\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$,
a) determine $\vec{A} \times \vec{B}$
b) determine $\vec{B} \times \vec{A}$

Example

Given two vectors $\vec{A}=6 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}$ and $\vec{B}=-5 \underline{\hat{\mathbf{i}}}+12 \underline{\hat{\mathbf{j}}}$,
a) determine the magnitude and direction of \vec{A} and \vec{B}
b) determine $\vec{A}+\vec{B}$
c) determine $\vec{B}-\vec{A}$
d) use two methods to determine $\vec{A} \cdot \vec{B}$
e) use two methods to determine $\vec{A} \times \vec{B}$

