Integral Calculus

What is $2 x^{3}$ the derivative of?

Antiderivatives and Indefinite Integrals

- Given a function $f(x)$, an antiderivative of $f(x)$ is any function $F(x)$ such that $F^{\prime}(x)=f(x)$.
- If $F(x)$ is any antiderivative of $f(x)$, then the most general antiderivative of $f(x)$ is called the indefinite integral and denoted
 variable of integration

Constant Multiple Rule

$$
\int k f(x) d x=k \int f(x) d x
$$

Sum/Difference Rule

$$
\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
$$

Example

Evaluate the following indefinite integrals
a) $\int x^{5} d x$
b) $\int \frac{2}{x^{2}} d x$
c) $\int x^{n} d x$
d) $\int \sin x d x$
e) $\int \cos x d x$
f) $\int e^{a x} d x$
g) $\int \frac{1}{x} d x$
h) $\int\left(e^{-x}-\sin (2 x)\right) d x$

- The constant of integration can be determined with the initial (or other given) conditions.

Example

If $f^{\prime}(x)=6 x^{2}-1$ and $f(2)=10$, what is $f(x)$?

How would you determine the area of the shaded region below?

Definite Integrals

- Suppose $f(x)$ is a continuous function on $[a, b]$ and also suppose that $F(x)$ is any antiderivative for $f(x)$. Then the definite integral of $f(x)$ is

limits of integration
- Graphically, the definite integral gives the area under the curve $y=f(x)$ (i.e. between $f(x)$ and the x-axis) on the interval $[a, b]$.

Properties of the Definite Integral

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x \\
\hline
\end{gathered}
$$

Example
Find the area under $f(x)=x^{2}$ between $x=0$ and $x=2$.

Example

Determine the area under $f(\theta)=\sin \theta$
a) between $\theta=0$ and $\theta=\pi$
b) between $\theta=0$ and $\theta=2 \pi$

Integration by Substitution

- Integration by substitution (also known as u-substitution) is the reverse of the chain rule used in differentiation.
- Consider an integral which can be written in the following form

$$
\int f\left(\frac{g(x)}{u}\right) \frac{g^{\prime}(x) d x}{d u}
$$

- Notice how you have an inner function $g(x)$ and its derivative $g^{\prime}(x)$.
. Let $u=g(x)$. Then $\frac{d u}{d x}=g^{\prime}(x) \rightarrow d u=g^{\prime}(x) d x$. After substituting, our integral is

$$
\int f(u) d u
$$

- After integrating, return the function to be in terms of the original variable.

Example

Evaluate the following integrals.
a) $\int(8 x-12)\left(4 x^{2}-12 x\right)^{4} d x$
b) $\int 90 x^{2} \sin \left(2+6 x^{3}\right) d x$
c) $\int^{1}(3-4 x)\left(4 x^{2}-6 x+1\right)^{10} d x$

0

Applications of Integrals in Physics

- Definite integrals can be used to determine the sum of many infinitesimal parts (the area under a curve).
- Displacement is the area under a velocity vs. time graph.

$$
d=\Delta x=\int_{t_{1}}^{t_{2}} v(t) d t
$$

- Change in velocity is area under an acceleration vs. time graph.

$$
\Delta v=\int_{t_{1}}^{t_{2}} a(t) d t
$$

- Work is the area under a force vs. position graph.

$$
W=\Delta E=\int_{x_{1}}^{x_{2}} F(x) d x
$$

- Impulse is the area under a force vs. time graph.

$$
J=\Delta p=\int_{t_{1}}^{t_{2}} F(t) d t
$$

