Differential Calculus

Functions

• A **function** is a rule that for each element of one set *D* gives an element of another set *E*. The set *D* is called domain of the function, and *E* is the range.

<u>Example</u>

For each function, graph y = f(x) and determine f(2).

Function	Graph	f(2)
$f(x) = x^2$		

Derivatives

- The **derivative** of a function y = f(x) describes the rate of change of the function with respect to *x*.
- Graphically, the derivative gives the instantaneous slope of the graph of f(x) at any x.

• Notation:
$$f'(x)$$
 or $\frac{dy}{dx}$ or $\frac{d}{dx}f(x)$

• In math, we learned how to determine the slope of a straight line using rise over run, $\frac{\Delta y}{\Delta x}$.

How do we determine the slope if we have a curve?

 Recall when analyzing curved position vs. time graphs, we drew a tangent line to determine the slope.

<u>Example</u>

Graph each function and its derivative.

f(x)	Graph of f(x)	Graph of f'(x)
f(x) = x		

Power Rule

$$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$$

Example

Determine the derivative of each of the following functions.

a)
$$y = x^2$$
 b) $y = x^5$

c)
$$y = \frac{1}{x^3}$$
 d) $y = \sqrt[3]{x}$

Constant Rule

$$\frac{d}{dx}\left(k\right) = 0$$

Constant Multiple Rule

$$\frac{d}{dx}\left(kf(x)\right) = kf'(x)$$

Sum/Difference Rule

$$\frac{d}{dx}\left(f(x) \pm g(x)\right) = f'(x) \pm g'(x)$$

Example

Determine the derivatives of the following polynomials. a) $y = 2x^5$

b)
$$y = x^4 + \frac{1}{x^2}$$

c)
$$y = 2x^3 - \frac{x^2}{2} + 3x - 5$$

Derivatives of Trigonometric Functions

Example Graph $f(x) = \sin x$ and $g(x) = \cos x$ and their derivatives.

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\cos x) = -\sin x$$
$$\frac{d}{dx}(-\sin x) = -\cos x \qquad \frac{d}{dx}(-\cos x) = \sin x$$

Is there a function (aside from f(x) = 0) whose derivative is equal to itself?

Derivatives of Exponential and Logarithmic Functions

$$\frac{d}{dx}(e^x) = e^x \qquad \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

- Recall that Euler's number e is a mathematical constant approximately equal to 2.71828
- Recall that the natural logarithm of a number is its logarithm to base *e* (i.e. $\ln x = \log_e x$).

Example

Determine the derivative of each of the following functions.

a)
$$y = 4e^x$$

b)
$$y = -\frac{\ln x}{5} - 4\cos x$$

c)
$$y = 3e^x - 3x^3 - 3$$

d)
$$y = \frac{4}{\sqrt{x^3}} + 3\sin x + 1$$

Product Rule

$$\frac{d}{dx}\left(f(x) \cdot g(x)\right) = f(x)g'(x) + g(x)f'(x)$$

Example

Determine the derivative of the following function using two different methods.

$$y = \left(3x^2 + 5\right)\left(x^3 + 4x\right)$$

Example

Determine the derivative of each of the following functions. a) $y = 4x^2 \sin x$

b)
$$y = e^x \cos x$$

c)
$$y = -3 \ln x (x^2 - 4x + 1)$$

d)
$$y = \frac{\cos x}{2x^4} + \sin x - \frac{\pi}{2}$$

Quotient Rule

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

Example

Determine the derivative of each of the following functions

a)
$$y = \frac{4x+1}{2x^2+x}$$

b)
$$y = \frac{\ln x}{x}$$

c)
$$y = \csc x$$

d) $y = \tan x$

Chain Rule

$$\frac{d}{dx}\left(\left(f(g(x))\right)\right) = f'\left(g(x)\right) \cdot g'(x)$$

Example

Determine the derivative of the following function using three different methods.

$$y = \left(5 - 6x\right)^2$$

Example

Determine the derivative of each of the following functions.

a) $y = \cos(2x^3)$

b)
$$y = 5e^{-3t}$$

c)
$$y = 4e^{-3t} (\sin 2t + 1)$$

<u>Example</u>

Prove the quotient rule using the product and chain rules.

Higher Order Derivatives

- The **second derivative** of a function y = f(x) is the derivative of the function's *first* derivative.
- Graphically, the derivative gives the concavity of the graph of *f*(*x*) at any *x*.

• Notation:
$$f''(x)$$
 or $\frac{d^2y}{dx^2}$ or $\frac{d^2}{dx^2}f(x)$

• f'''(x) = (f''(x))' is the *third* derivative and $f^{(4)}(x) = (f'''(x))'$ is the *fourth* derivative.

Example

Determine the second derivative of each of the following functions.

a)
$$y = 6x^4 - 2x^3 + 10x^2 - 4$$

b)
$$y = 4 \sin(3x)$$

c)
$$y = 2e^x - 4\sqrt{x}$$

d)
$$y = (3x^2 + e^x)^2$$

Applications of Derivatives in Physics

- Derivatives are used whenever you are looking for the rate of change of a quantity (or slope of a graph).
 - Velocity is the rate of change of position

$$v = \frac{dx}{dt}$$

Acceleration is the rate of change of velocity

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Force is the rate of change of momentum

$$F = \frac{dp}{dt}$$

Power is the rate at which work is done

$$P = \frac{dE}{dt}$$