Differential Calculus

Functions

- A function is a rule that for each element of one set D gives an element of another set E. The set D is called domain of the function, and E is the range.

Example

For each function, graph $y=f(x)$ and determine $f(2)$.
Function
\square

Derivatives

- The derivative of a function $y=f(x)$ describes the rate of change of the function with respect to x.
- Graphically, the derivative gives the instantaneous slope of the graph of $f(x)$ at any x.
. Notation: $f^{\prime}(x)$ or $\frac{d y}{d x}$ or $\frac{d}{d x} f(x)$
- In math, we learned how to determine the slope of a straight line using rise over run, $\frac{\Delta y}{\Delta x}$.

How do we determine the slope if we have a curve?

- Recall when analyzing curved position vs. time graphs, we drew a tangent line to determine the slope.

Example
Graph each function and its derivative.

$\mathbf{f}(\mathbf{x})$	Graph of $\mathbf{f}(\mathbf{x})$	Graph of $\mathbf{f}^{\prime}(\mathbf{x})$

Power Rule

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Example
Determine the derivative of each of the following functions.
a) $y=x^{2}$
b) $y=x^{5}$
c) $y=\frac{1}{x^{3}}$
d) $y=\sqrt[3]{x}$

Constant Rule

$$
\frac{d}{d x}(k)=0
$$

Constant Multiple Rule

$$
\frac{d}{d x}(k f(x))=k f^{\prime}(x)
$$

Sum/Difference Rule

$$
\frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)
$$

Example
Determine the derivatives of the following polynomials.
a) $y=2 x^{5}$
b) $y=x^{4}+\frac{1}{x^{2}}$
c) $y=2 x^{3}-\frac{x^{2}}{2}+3 x-5$

Derivatives of Trigonometric Functions

Example
Graph $f(x)=\sin x$ and $g(x)=\cos x$ and their derivatives.
$f(x)=\sin x$

$f^{\prime}(x)$

$$
g(x)=\cos x
$$

$g^{\prime}(x)$

$$
\begin{aligned}
\frac{d}{d x}(\sin x) & =\cos x \quad \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}(-\sin x) & =-\cos x \quad \frac{d}{d x}(-\cos x)=\sin x
\end{aligned}
$$

Is there a function (aside from $f(x)=0$) whose derivative is equal to itself?

Derivatives of Exponential and Logarithmic Functions

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad \frac{d}{d x}(\ln x)=\frac{1}{x}
$$

- Recall that Euler's number e is a mathematical constant approximately equal to 2.71828
- Recall that the natural logarithm of a number is its logarithm to base e (i.e. $\ln x=\log _{e} x$).
$f(x)=e^{x}$

$f^{\prime}(x)=e^{x}$

$g(x)=\ln x$

$$
g^{\prime}(x)=\frac{1}{x}
$$

Example
Determine the derivative of each of the following functions.
a) $y=4 e^{x}$
b) $y=-\frac{\ln x}{5}-4 \cos x$
c) $y=3 e^{x}-3 x^{3}-3$
d) $y=\frac{4}{\sqrt{x^{3}}}+3 \sin x+1$

Product Rule

$$
\frac{d}{d x}(f(x) \cdot g(x))=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

Example

Determine the derivative of the following function using two different methods.

$$
y=\left(3 x^{2}+5\right)\left(x^{3}+4 x\right)
$$

Example

Determine the derivative of each of the following functions.
a) $y=4 x^{2} \sin x$
b) $y=e^{x} \cos x$
c) $y=-3 \ln x\left(x^{2}-4 x+1\right)$
d) $y=\frac{\cos x}{2 x^{4}}+\sin x-\frac{\pi}{2}$

Quotient Rule

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Example
Determine the derivative of each of the following functions
a) $y=\frac{4 x+1}{2 x^{2}+x}$
b) $y=\frac{\ln x}{x}$
c) $y=\csc x$
d) $y=\tan x$

Chain Rule

$$
\frac{d}{d x}\left((f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)\right.
$$

Example
Determine the derivative of the following function using three different methods.

$$
y=(5-6 x)^{2}
$$

Example

Determine the derivative of each of the following functions.
a) $y=\cos \left(2 x^{3}\right)$
b) $y=5 e^{-3 t}$
c) $y=4 e^{-3 t}(\sin 2 t+1)$

Example Prove the quotient rule using the product and chain rules.

Higher Order Derivatives

- The second derivative of a function $y=f(x)$ is the derivative of the function's first derivative.
- Graphically, the derivative gives the concavity of the graph of $f(x)$ at any x.
. Notation: $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$ or $\frac{d^{2}}{d x^{2}} f(x)$
- $f^{\prime \prime \prime}(x)=\left(f^{\prime \prime}(x)\right)^{\prime}$ is the third derivative and $f^{(4)}(x)=\left(f^{\prime \prime \prime}(x)\right)^{\prime}$ is the fourth derivative.

Example

Determine the second derivative of each of the following functions.
a) $y=6 x^{4}-2 x^{3}+10 x^{2}-4$
b) $y=4 \sin (3 x)$
c) $y=2 e^{x}-4 \sqrt{x}$
d) $y=\left(3 x^{2}+e^{x}\right)^{2}$

Applications of Derivatives in Physics

- Derivatives are used whenever you are looking for the rate of change of a quantity (or slope of a graph).
- Velocity is the rate of change of position

$$
v=\frac{d x}{d t}
$$

- Acceleration is the rate of change of velocity

$$
a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
$$

- Force is the rate of change of momentum

$$
F=\frac{d p}{d t}
$$

- Power is the rate at which work is done

$$
P=\frac{d E}{d t}
$$

