Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Vector Kinematics in Two Dimensions and
Dynamics and Vector Dynamics
2. Work, Energy and Power
and
Momentum
3. Equilibrium
4. Circular Motion
and
Gravitation
5. Electrostatics
6. Electric Circuits
7. Electromagnetism

Sub-Organizers
A, B
C, D
E

F, G
H
I
J
K, L
M, N
O, P

PART A: Multiple Choice (each question worth TWO marks)

Q	K	C	S	CO	PLO	Q	K	C	S	CO	PLO
1.	A	K	2	1	A1	16.	D	H	2	4	I4; E8
2.	C	U	2	1	B8	17.	B	K	2	4	J4
3.	B	U	2	1	B8; E7	18.	B	U	2	4	J6
4.	D	K	2	1	C6	19.	D	K	2	5	L1
5.	D	U	2	1	C4, 8	20.	D	U	2	5	K5
6.	DELETED					21.	C	K	2	6	M7
7.	B	U	2	2	E6, 7	22.	C	U	2	6	M11
8.	A	U	2	2	E7, 8; D6	23.	D	H	2	6	N2; M7
9.	A	U	2	2	E2, 10	24.	D	K	2	7	O4
10.	D	U	2	2	G3	25.	A	U	2	7	O3
11.	DELETED					26.	B	U	2	7	O6
12.	C	U	2	3	H2, 3	27.	A	U	2	7	O8
13.	D	U	2	3	H5, 11	28.	C	U	2	7	P5
14.	B	U	2	4	I4; J2, 8	29.	C	U	2	7	P9
15.	C	U	2	4	I4; D5	30.	B	H	2	7	O5; C7; D5

Multiple Choice $\mathbf{=} \mathbf{6 0}$ marks

PART B: Written Response

\mathbf{Q}	\mathbf{B}	\mathbf{C}	\mathbf{S}	$\mathbf{C O}$	PLO
1.	1	U	9	1	$\mathrm{C} 4,8 ; \mathrm{D} 4$
2.	2	U	7	2	G3
3.	3	U	7	3	$\mathrm{H} 11,5$
4.	4	U	7	4	J9, 10; I4
5.	5	U	7	5	L 8
6.	6	U	7	6	$\mathrm{M} 6,7 ; \mathrm{N} 2$
7.	7	U	7	7,1	$\mathrm{O} ; \mathrm{C}$
8	8	H	5	1,3	A10; H4
9.	9	H	4	5,1	$\mathrm{~K} 2,8 ; \mathrm{C} 4$

Written Response = 60 marks

$$
\begin{aligned}
\text { Multiple Choice } & =60(30 \text { questions }) \\
\text { Written Response } & =60(9 \text { questions }) \\
\text { Examination Total } & =\mathbf{1 2 0} \text { marks }
\end{aligned}
$$

LEGEND:

Q = Question Number
$\mathbf{C O}=$ Curriculum Organizer
PLO $=$ Prescribed Learning Outcome

B = Score Box Number
$\mathbf{K}=$ Keyed Response
C = Cognitive Level
$\mathbf{S}=$ Score

1. Two masses are connected by a light cord passing over frictionless pulleys as shown in the diagram below.

a) What is m_{2} if the system accelerates as shown?

$$
\begin{aligned}
& F_{n e t}=m_{s} a \\
& m_{2} g-m_{1} g=\left(m_{1}+m_{2}\right) a \quad \leftarrow \mathbf{3} \text { marks } \\
& 9.8 m_{2}-9.8(4)=\left(4.0+m_{2}\right) 1.5 \\
& 9.8 m_{2}-39.6=6.0+1.5 m_{2} \\
& 9.8 m_{2}-1.5 m_{2}=6.0+39.2 \\
& 8.3 m_{2}=45.2 \\
& m_{2}=5.4 \mathrm{~kg} \quad \leftarrow \mathbf{2} \text { marks }
\end{aligned}
$$

Since the system mass has increased, the acceleration must decrease ($a=F_{n e t} / m_{\text {total }}$). Since there is friction, the net force will decrease and the acceleration will be smaller yet. (4 marks)
2. A 4300 kg truck travelling at $21 \mathrm{~m} / \mathrm{s}$ in the direction of 31° north of east collides with a stationary 1500 kg car. After the collision, the car has a speed of $15 \mathrm{~m} / \mathrm{s}$ due east. What is the resulting speed of the truck?

By cosine law:

$$
\begin{aligned}
& P_{\text {truck }}^{\prime}=(22500)^{2}+(90300)^{2}-2 \cdot 22500 \cdot 90300 \cdot \cos 31 \leftarrow \mathbf{2} \text { marks } \\
&\left.\begin{array}{rl}
P_{\text {truck }}^{\prime} & =7.18 \times 10^{4} \\
& \therefore v_{\text {truck }}^{\prime}=\frac{7.18 \times 10^{4}}{4300} \\
& =16.7 \\
& =17 \mathrm{~m} / \mathrm{s}
\end{array}\right\} \leftarrow \mathbf{2} \text { marks }
\end{aligned}
$$

3. A sign is suspended from the end of a 6.0 m long uniform pole of mass 25 kg as shown. If the mass of the sign is 36 kg , what is the tension in the horizontal restraining cable?

$\sum \tau_{c}=\sum \tau_{c c}$
$\leftarrow 1$ mark
$F_{p} d_{p} \sin \theta_{p}+F_{s} d_{s} \sin \theta_{s}=F_{c} d_{c} \sin \theta_{c}$
$\leftarrow \mathbf{3}$ marks
$25 \cdot 9.8 \cdot 3.0 \cdot \sin 50+36 \cdot 9.8 \cdot 6.0 \cdot \sin 50=F_{c} \cdot 5.0 \cdot \sin 40$

$$
\begin{array}{rlrl}
F_{c} & =\frac{25 \cdot 9.8 \cdot 3.0 \cdot \sin 50+36 \cdot 9.8 \cdot 6.0 \cdot \sin 50}{5.0 \cdot \sin 40} & \leftarrow \mathbf{2} \text { marks } \\
& =\frac{563.0+1621.6}{3.21} & & \\
& =680 \mathrm{~N} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

4. A $4.20 \times 10^{4} \mathrm{~kg}$ satellite orbits the earth at an altitude of $700 \mathrm{~km}\left(7.00 \times 10^{5} \mathrm{~m}\right)$.

a) What is the satellite's orbital speed at this altitude?
(4 marks)

$$
\begin{aligned}
& F_{g}=F_{c} \\
& \frac{G m M}{R^{2}}=\frac{m v^{2}}{R} \\
& v=\sqrt{\frac{G M}{R}} \\
&=\sqrt{\frac{6.67 \times 10^{-11}\left(5.98 \times 10^{24}\right)}{7.08 \times 10^{6}}} \\
& v=7.51 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& \leftarrow 4 \text { marks }
\end{aligned}
$$

b) What is the satellite's total energy at this altitude?

$$
\begin{aligned}
E_{T} & =E_{p}+E_{k} \quad \leftarrow \mathbf{1} \text { mark } \\
& =\frac{-G m_{E} m}{r}+\frac{1}{2} m v^{2} \quad \leftarrow \mathbf{1} \text { mark } \\
& =\frac{-6.67 \times 10^{-11} \cdot 5.98 \times 10^{24} \cdot 4.20 \times 10^{4}}{7.08 \times 10^{6}}+\frac{1}{2} \cdot 4.20 \times 10^{4} \cdot\left(7.51 \times 10^{3}\right)^{2} \\
& =-2.37 \times 10^{12}+1.18 \times 10^{12} \\
& =-1.18 \times 10^{12} \mathrm{~J} \quad \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

5. a) Determine the electric potential, relative to zero at infinity, at point P, midway between the two charges, shown below.

$$
\begin{array}{ll}
V=V_{50 \mu C}+V_{-20 \mu C} & \leftarrow \mathbf{1} \text { mark } \\
V=9.0 \times 10^{9}\left(50 \times 10^{-6}\right) / 5.0+9 \times 10^{9}\left(-20 \times 10^{-6}\right) / 5.0 & \leftarrow \mathbf{3} \text { marks } \\
V=5.4 \times 10^{4} \mathrm{~V} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

b) How much work would it take to move $\mathrm{a}-15 \mu \mathrm{C}$ charge from point P to a position infinitely far away?

$$
\begin{array}{ll}
W=\Delta E_{p}=E_{p f}-E_{p i} & \\
W=0-\left(54 \times 10^{3}\right)\left(-15 \times 10^{-6}\right) & \leftarrow \mathbf{1} \text { mark } \\
W=0.81 \mathbf{~ J} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

6. The 8.0Ω resistor in the circuit shown below dissipates 45 J of heat energy in 5.0 s . Determine the value of the resistor R.

$$
\begin{array}{rlrl}
P_{8.0 \Omega} & =45 / 5.0 & & \\
P_{8.0 \Omega} & =9.0 \mathrm{~W} & & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
9.0 & =\left(I_{8.0 \Omega}\right)^{2} \cdot 8.0 & & \\
I_{8.0 \Omega} & =1.06 \mathrm{~A} & & \\
V_{R} & =V_{8.0 \Omega}=1.06 \cdot 8.0=8.48 \mathrm{~V} & \leftarrow \mathbf{1} \text { mark } \\
I_{R} & =I_{\text {circuit }}-I_{8.0 \Omega} & & \\
I_{R} & =(20-8.48) /(5.0)-1.06 & & \\
& =1.24 \mathrm{~A} & & \\
R & =8.48 / 1.24 & & \leftarrow \mathbf{2} \text { marks } \\
& =6.8 \Omega & &
\end{array}
$$

7. A 0.13 kg aluminum rod maintains contact with two vertical metal rails. A voltage is applied across the metal rails and a horizontal magnetic field of 0.65 T exists across the whole apparatus as shown.

What current must flow through the aluminum rod to have it remain stationary?

$$
\begin{aligned}
\vec{F}_{g} & =\vec{F}_{B} & & \leftarrow \mathbf{2} \text { marks } \\
m g & =B I \ell & & \leftarrow \mathbf{2} \text { marks } \\
& =\frac{0.13 \times 9.8}{0.65 \times 0.090} & & \leftarrow \mathbf{2} \text { marks } \\
& =22 \mathrm{~A} & & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

8. A student uses a wrench to apply a constant force to turn a nut. He applies the force at various angles and measures the amount of torque produced at each of the angles.

The torque data collected by the student along with the sine of the angles is shown below:

TORQUE (N.m)	4.0	11	17	22	25
$\operatorname{Sin} \theta$	0.14	0.42	0.66	0.86	0.98

a) Plot a graph of torque versus $\sin \theta$ on the graph below.
(2 marks)

$\leftarrow 2$ marks for graph
1 mark for line
1 mark for dots
$-\frac{1}{2}$ mark for wayward dots
slope $\approx 25 \mathrm{~N} \cdot \mathrm{~m} \quad \leftarrow \mathbf{1}$ mark
$\frac{1}{2}$ mark for numeric answer
$\frac{1}{2}$ mark for units
c) Use the slope of your graph to determine the amount of constant force the student used throughout his experiment.

$$
\tau=F \cdot \ell
$$

$$
\left.\begin{array}{rl}
F & =\frac{\text { slope }}{\ell}=\frac{\tau}{\ell}=\frac{25 \mathrm{~N} \cdot \mathrm{~m}}{0.60} \\
& \approx 42 \mathrm{~N}
\end{array}\right\} \leftarrow 2 \text { marks }
$$

1 mark for equation and algebra
1 mark for substitution and answer
$-\frac{1}{2}$ mark for using 25 and it is not slope found in b)
9. A small plastic ball carrying a positive charge is held near a fixed large positively charged sphere as shown below. It is then released. Explain how and why the acceleration of the plastic ball changes as it moves away from the sphere.
(4 marks)

The size of the electrostatic force will be decreasing with separation from the sphere ($1 \frac{1}{2}$ marks), so the acceleration of the plastic ball will be decreasing ($1 \frac{1}{2}$ marks).
According to Coulomb's Law, where $F=\frac{k q_{1} q_{2}}{r^{2}}(\mathbf{1}$ mark $)$.

