Physics 12

June 2001 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Vector Kinematics in Two Dimensions and Dynamics and Vector Dynamics
2. Work, Energy and Power and Momentum
3. Equilibrium
4. Circular Motion
and
Gravitation
5. Electrostatics
6. Electric Circuits
7. Electromagnetism

Sub-Organizers
A, B

C, D
E

F, G
H
I

J
K, L
M, N
O, P

PART A: Multiple Choice (each question worth TWO marks)

Q	K	C	S	CO	PLO	Q	K	C	S	CO	PLO
1.	B	K	2	1	A1	16.	C	H	2	4	I4; D5
2.	B	U	2	1	B2	17.	D	K	2	4	J5
3.	A	U	2	1	B8	18.	A	U	2	4	J7
4.	D	K	2	1	C3	19.	D	K	2	5	K8; D4
5.	B	U	2	1	D6; C4	20.	D	U	2	5	L3; K4
6.	B	K	2	2	E1, 4	21.	C	K	2	6	M1
7.	D	U	2	2	E10	22.	B	U	2	6	M11
8.	C	U	2	2	E2, 5	23.	B	H	2	6	N2; M7
9.	D	U	2	2	E10; N2	24.	C	K	2	7	O9
10.	D	U	2	2	F4	25.	D	U	2	7	O4
11.	D	K	2	3	H4	26.	A	U	2	7	O1, 3
12.	C	U	2	3	H3; D5	27.	D	U	2	7	P5
13.	C	U	2	3	H11	28.	B	U	2	7	P1; O4
14.	A	U	2	4	I4; D5; C8	29.	D	U	2	7	P9
15.	B	U	2	4	I3; A10	30.	B	H	2	7	P1, 6; M5

Multiple Choice $=\mathbf{6 0}$ marks

PART B: Written Response

\mathbf{Q}	\mathbf{B}	\mathbf{C}	\mathbf{S}	$\mathbf{C O}$	PLO
1.	1	H	9	1	$\mathrm{C} 4,3 ; \mathrm{D} 3,5$
2.	2	U	7	2	G 3
3.	3	U	7	3	H 11
4.	4	U	7	4	$\mathrm{~J}, 9,10$
5.	5	U	7	5	L 8
6.	6	U	7	6	$\mathrm{M} 11,6,5 ; \mathrm{N} 2$
7.	7	U	7	7	$\mathrm{O}, 8$
8	8	H	5	1	$\mathrm{O} ; \mathrm{A} 10$
9.	9	H	4	7	$\mathrm{~L} 8 ; \mathrm{K} 6 ; \mathrm{L} 1$

Written Response $=\mathbf{6 0}$ marks

$$
\begin{aligned}
\text { Multiple Choice } & =60(30 \text { questions }) \\
\text { Written Response } & =60 \text { (9 questions) } \\
\text { ExAMINATION TOTAL } & =\mathbf{1 2 0} \text { marks }
\end{aligned}
$$

LEGEND:

Q = Question Number
$\mathbf{C O}=$ Curriculum Organizer
PLO = Prescribed Learning Outcome

B = Score Box Number
$\mathbf{K}=$ Keyed Response

C = Cognitive Level
$\mathbf{S}=$ Score

1. A 3.0 kg mass hangs at one end of a rope that is attached to a support on a child's wagon as shown in the diagram. The wagon is pulled to the right. (You may ignore air resistance.)

a) Draw and label a free body diagram showing the forces acting on the mass.

1 mark for each force ($\frac{1}{2}$ for labelling, $\frac{1}{2}$ for direction drawn correctly)
b) What is the acceleration of the wagon?

$\tan 76^{\circ}=\frac{F_{g}}{F_{n e t}}$
$F_{n e t}=\frac{F_{g}}{\tan 76^{\circ}}$
$=\frac{3.0 \times 9.8}{\tan 76^{\circ}}$

$$
=7.33 \mathrm{~N} \quad \leftarrow \mathbf{2} \text { marks }
$$

$$
a=\frac{F_{n e t}}{m}
$$

$$
a=\frac{7.33}{3.0}
$$

$$
a=2.4 \mathrm{~m} / \mathrm{s}^{2} \quad \leftarrow \mathbf{1} \text { mark }
$$

c) On the diagram below, sketch the position of the mass when the cart reaches a constant velocity of $6.5 \mathrm{~m} / \mathrm{s}$.

d) Using principles of physics, explain why the mass will be in this position.

Constant velocity means acceleration $=0(\mathbf{1}$ mark $)$

$$
\therefore F_{n e t}=0(\mathbf{1} \text { mark })
$$

\therefore Sum of all vertical forces is zero
\therefore Tension $=F_{g}\left(\frac{1}{2}\right.$ mark $)$
\therefore There is no horizontal force component, so the mass hangs straight down. ($\frac{1}{2}$ mark)

2. Sally is driving south in her 2500 kg pickup truck at $3.8 \mathrm{~m} / \mathrm{s}$ when she collides with Willy driving west in his 1200 kg car at $4.5 \mathrm{~m} / \mathrm{s}$.

The two vehicles lock together and slide over the wet parking lot. Find the speed and direction of the damaged vehicles immediately after the collision.

$$
\left.\begin{array}{rlrl}
\left(p^{\prime}\right)^{2} & =5400^{2}+9500^{2} & \leftarrow \mathbf{1} \text { mark for addition } \\
p^{\prime} & =10900 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} & & \leftarrow \mathbf{2} \text { marks for pythagorus } \\
v^{\prime} & =\frac{10900}{(2500+1200)}=3.0 \mathrm{~m} / \mathrm{s} & \leftarrow \mathbf{1} \text { mark for dividing by } \mathbf{3 7 0 0} \\
\left.\tan \alpha=\frac{9500}{5400}\right\} & \leftarrow \mathbf{1} \text { mark } \\
\left.\begin{array}{l}
\alpha \\
\hline
\end{array}\right\} 60^{\circ}
\end{array}\right\} \quad 1 \begin{aligned}
& v^{\prime}=3.0 \mathrm{~m} / \mathrm{s}, 60^{\circ} \mathrm{S} \text { of } \mathrm{W}
\end{aligned}
$$

3. A uniform 12 kg beam of length 3.00 m holding a 45 kg mass is attached by a wire to a wall as shown.

What is the tension in the wire?

$$
\begin{array}{rlrl}
\overbrace{\left(T \times \sin 55^{\circ}\right) \times 3.00}^{\tau_{c c}} & =\tau_{c} & \overbrace{((12 \times 9.8) \times 1.5)}^{\mathbf{2} \text { marks marks }}+\overbrace{(45 \times 9.8 \times 0.80)}^{\mathbf{1} \text { mark }} & \leftarrow \mathbf{1} \text { mark } \\
T \times 2.457 & =176.4+352.8 & & \\
T & =\frac{529.2}{2.457} & & \\
T & =215 \mathrm{~N} & \mathbf{1} \text { marks }
\end{array}
$$

4. An 884 kg satellite in orbit around a planet has a gravitational potential energy of $-5.44 \times 10^{10} \mathrm{~J}$. The orbital radius of the satellite is $8.52 \times 10^{6} \mathrm{~m}$ and its speed is $7.84 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
a) What is the mass of the planet?

$$
\begin{array}{rlrl}
E_{p} & =-\frac{G M m}{r} & \leftarrow \mathbf{1} \text { mark } \\
-5.44 \times 10^{10} & =-\frac{6.67 \times 10^{-11} \times M \times 884}{8.52 \times 10^{6}} & \leftarrow \mathbf{1} \frac{1}{2} \text { mark } \\
M & =7.86 \times 10^{24} \mathrm{~kg} & & \leftarrow \frac{1}{2} \text { mark }
\end{array}
$$

b) What is the kinetic energy of the satellite?

$$
\begin{array}{rlrl}
E_{k} & =\frac{1}{2} m v^{2} & \leftarrow \frac{1}{2} \text { mark } \\
& =\frac{1}{2}(884)\left(7.84 \times 10^{3}\right)^{2} & & \leftarrow \mathbf{1} \text { mark } \\
& =2.72 \times 10^{10} \mathrm{~J} & & \leftarrow \frac{1}{2} \text { mark }
\end{array}
$$

c) What is the total energy of the satellite?

$$
\begin{aligned}
E_{T} & =E_{k}+E_{p} & & \leftarrow \mathbf{1} \text { mark } \\
& =2.72 \times 10^{10}+\left(-5.44 \times 10^{10}\right) & & \leftarrow \frac{1}{2} \text { mark } \\
& =-2.72 \times 10^{10} \mathrm{~J} & & \leftarrow \frac{1}{2} \text { mark }
\end{aligned}
$$

5. Electric charges Q_{1} and Q_{2} are arranged as shown in the diagram below.

$$
Q_{1}=7.5 \times 10^{-6} \mathrm{C} \quad \mathrm{Q}_{2}=-2.5 \times 10^{-6} \mathrm{C}
$$

0.15 m

What is the electric potential at point P ?

$$
\begin{array}{rlrl}
V_{1} & =\frac{k Q_{1}}{r_{1}} & \\
& =\frac{9.0 \times 10^{9} \cdot 7.5 \times 10^{-6}}{(0.20 \mathrm{~m}+0.15 \mathrm{~m})} & & \\
& =1.93 \times 10^{5} \mathrm{~V} & & \\
V_{2} & =\frac{k Q_{2}}{r_{2}} & & \\
& =\frac{\left(9.0 \times 10^{9}\right)\left(-2.5 \times 10^{-6} \mathrm{C}\right)}{(0.15 \mathrm{~m})} & & \leftarrow \mathbf{2} \text { marks } \\
& =-1.50 \times 10^{5} \mathrm{~V} & & \\
V_{p} & =V_{1}+V_{2} & \mathbf{2} \text { marks } \\
& =1.93 \times 10^{5} \mathrm{~V}+-1.50 \times 10^{5} \mathrm{~V} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

6. The current through the 50.0Ω resistor in the circuit below is 0.14 A .

a) Determine the emf of the battery.

$$
\begin{aligned}
V_{\|} & =I \cdot R & R_{\|} & =\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}} \\
& =I_{3} \cdot R_{3} & & \\
& =0.14 \cdot 50.0 & & 15.4 \Omega
\end{aligned} \quad \leftarrow \frac{1}{2} \text { mark }
$$

b) Determine the power dissipated in the battery's internal resistance.

$$
\begin{array}{rlrl}
P_{r} & =I^{2} \cdot r & \leftarrow \mathbf{1} \text { mark } \\
& =(0.45)^{2} \cdot 0.80 & \\
& =0.16 \mathrm{~W} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

7. Protons travelling at $2.2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enter at right angles to a magnetic field. The field is produced by a 0.16 m long solenoid. A current of 5.3 A flows through the 820 turns of wire of the solenoid.
a) What is the magnetic field in the solenoid?
(3 marks)

$$
\begin{array}{ll}
B=\mu_{0} \frac{N}{\ell} I & \leftarrow \mathbf{1} \text { mark } \\
B=\frac{\left(4 \pi \times 10^{-7}\right)(820)(5.3)}{(0.16)} & \leftarrow \mathbf{1} \text { mark } \\
B=3.4 \times 10^{-2} \mathrm{~T} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

b) What is the radius of curvature of the proton beam in the magnetic field of the solenoid?

$$
\begin{array}{rlrl}
F_{c} & =\frac{m v^{2}}{r} & \leftarrow \frac{1}{2} \text { mark } \\
F_{E} & =B q v & & \leftarrow \frac{1}{2} \text { mark } \\
B q v & =\frac{m v^{2}}{r} & & \} \mathbf{1} \mathbf{~ m a l} \\
r & =\frac{m v}{B q} & & \\
r & =\frac{\left(1.67 \times 10^{-27}\right)\left(2.2 \times 10^{5}\right)}{\left(3.4 \times 10^{-2}\right)\left(1.6 \times 10^{-19}\right)} & \leftarrow \mathbf{1} \text { mark } \\
r & =6.8 \times 10^{-2} \mathrm{~m} & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{array}
$$

8. A rectangular loop is suspended by a spring scale between magnetic poles. The loop is 0.60 m wide by 0.120 m high.

As the current in the loop is varied, the readings of the spring scale and current are plotted on a graph.

a) What is the weight, in newtons, of the loop?
$\approx 1.5 \mathrm{~N}$
b) What is the slope of the best fit line?
drawing a reasonable line through y-axis and to, or beyond, last point (1 mark)

$$
\frac{\Delta F}{\Delta I} \approx 0.58 \frac{\mathrm{~N}}{\mathrm{~A}} \text { or } 0.58 \mathrm{~T} \cdot \mathrm{~m}(\mathbf{1} \mathbf{~ m a r k})
$$

Since the best fit line is described by

$$
\begin{aligned}
& F_{\text {scale }}=F_{\text {mag }}+F_{g} \\
& F_{\text {scale }}=B \ell(I)+F_{g}
\end{aligned}
$$

the slope equals $B \ell \quad \leftarrow \mathbf{1}$ mark

$$
\therefore 0.58=B(0.060) \quad \leftarrow \frac{1}{2} \text { mark }
$$

$$
B=9.7 \mathrm{~T} \quad \leftarrow \frac{1}{2} \text { mark }
$$

9. A student decides to investigate how electric field varies along the line connecting two positive point charges. Charge Q_{2} is greater than charge Q_{1}.

Using principles of physics, describe the electric field along the line from Q_{1} to Q_{2}. (4 marks)

The electric field initially points to the right and decreases as you move along the line. At one point, closer to Q_{1}, the electric field will be zero. Past this point, the field is pointing to the left and increases.

