Physics 12 June 2001 Provincial Examination

Answer Key / Scoring Guide

	CURRICULUM:				
	Organizers	Sub-Organizers			
1.	Vector Kinematics in Two Dimensions and	Α, Β			
	Dynamics and Vector Dynamics	C, D			
2.	Work, Energy and Power <i>and</i>	Ε			
	Momentum	F, G			
3.	Equilibrium	Н			
4.	Circular Motion and	Ι			
	Gravitation	J			
5.	Electrostatics	K, L			
6.	Electric Circuits	M, N			
7.	Electromagnetism	O, P			

PART A: Multiple Choice (each question worth TWO marks)

Q	K	С	S	CO	PLO	Q	K	С	S	CO	PLO
1.	В	K	2	1	A1	16.	С	Н	2	4	I4; D5
2.	В	U	2	1	B2	17.	D	Κ	2	4	J5
3.	А	U	2	1	B8	18.	А	U	2	4	J7
4.	D	Κ	2	1	C3	19.	D	Κ	2	5	K8; D4
5.	В	U	2	1	D6; C4	20.	D	U	2	5	L3; K4
6.	В	Κ	2	2	E1, 4	21.	С	Κ	2	6	M1
7.	D	U	2	2	E10	22.	В	U	2	6	M11
8.	С	U	2	2	E2, 5	23.	В	Н	2	6	N2; M7
9.	D	U	2	2	E10; N2	24.	С	Κ	2	7	O9
10.	D	U	2	2	F4	25.	D	U	2	7	O4
11.	D	Κ	2	3	H4	26.	А	U	2	7	O1, 3
12.	С	U	2	3	H3; D5	27.	D	U	2	7	P5
13.	С	U	2	3	H11	28.	В	U	2	7	P1; O4
14.	А	U	2	4	I4; D5; C8	29.	D	U	2	7	P9
15.	В	U	2	4	I3; A10	30.	В	Н	2	7	P1, 6; M5

Multiple Choice = 60 marks

PART B: Written Response

Q	В	С	S	CO	PLO
1.	1	Н	9	1	C4, 3; D3, 5
2.	2	U	7	2	G3
3.	3	U	7	3	H11
4.	4	U	7	4	J6, 9, 10
5.	5	U	7	5	L8
6.	6	U	7	6	M11, 6, 5; N2
7.	7	U	7	7	O6, 8
8	8	Н	5	1	O5; A10
9.	9	Н	4	7	L8; K6; L1

Written Response = 60 marks

EXAMINATION TOTAL	=	120 marks
Written Response	=	60 (9 questions)
Multiple Choice	=	60 (30 questions)

LEGEND:		
\mathbf{Q} = Question Number	\mathbf{B} = Score Box Number	C = Cognitive Level
CO = Curriculum Organizer	$\mathbf{K} = \mathbf{Keyed} \ \mathbf{Response}$	S = Score
PLO = Prescribed Learning Outcome		

1. A 3.0 kg mass hangs at one end of a rope that is attached to a support on a child's wagon as shown in the diagram. The wagon is pulled to the right. (You may ignore air resistance.)

1 mark for each force $(\frac{1}{2}$ for labelling, $\frac{1}{2}$ for direction drawn correctly)

Т

c) On the diagram below, sketch the position of the mass when the cart reaches a constant velocity of 6.5 m/s. (1 mark)

d) Using principles of physics, explain why the mass will be in this position. (3 marks)

Constant velocity means acceleration = 0 (1 mark)

 $\therefore F_{net} = 0 (1 \text{ mark})$

: Sum of all vertical forces is zero

 \therefore Tension = $F_g\left(\frac{1}{2} \text{ mark}\right)$

 \therefore There is no horizontal force component, so the mass hangs straight down. $(\frac{1}{2} \text{ mark})$

2. Sally is driving south in her 2 500 kg pickup truck at 3.8 m/s when she collides with Willy driving west in his 1 200 kg car at 4.5 m/s.

The two vehicles lock together and slide over the wet parking lot. Find the speed and direction of the damaged vehicles immediately after the collision. (7 marks)

- 4. An 884 kg satellite in orbit around a planet has a gravitational potential energy of -5.44×10^{10} J. The orbital radius of the satellite is 8.52×10^6 m and its speed is 7.84×10^3 m/s.
 - a) What is the mass of the planet?

(3 marks)

$$E_p = -\frac{GMm}{r} \qquad \leftarrow 1 \text{ mark}$$

-5.44×10¹⁰ = $-\frac{6.67 \times 10^{-11} \times M \times 884}{8.52 \times 10^6} \qquad \leftarrow 1\frac{1}{2} \text{ mark}$
$$M = 7.86 \times 10^{24} \text{ kg} \qquad \leftarrow \frac{1}{2} \text{ mark}$$

b) What is the kinetic energy	of the satellite?	(2 marks)
$E_k = \frac{1}{2} m v^2$	$\leftarrow \frac{1}{2}$ mark	
$=\frac{1}{2}(884)(7.84\times10^3)^2$	← 1 mark	
$= 2.72 \times 10^{10} \text{ J}$	$\leftarrow \frac{1}{2}$ mark	

c) What is the total energy of the sate	(2 marks)	
$E_T = E_k + E_p$	\leftarrow 1 mark	
$= 2.72 \times 10^{10} + \left(-5.44 \times 10^{10}\right)$	$\leftarrow \frac{1}{2}$ mark	
$= -2.72 \times 10^{10} \text{ J}$	$\leftarrow \frac{1}{2}$ mark	

5. Electric charges Q_1 and Q_2 are arranged as shown in the diagram below.

$$Q_{1} = 7.5 \times 10^{-6} \text{ C}$$

$$(+)$$

$$(-)$$

$$Q_{2} = -2.5 \times 10^{-6} \text{ C}$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$V_{1} = \frac{kQ_{1}}{r_{1}}$$

$$= \frac{9.0 \times 10^{9} \cdot 7.5 \times 10^{-6}}{(0.20 \text{ m} + 0.15 \text{ m})}$$

$$= 1.93 \times 10^{5} \text{ V} \quad \leftarrow 2 \text{ marks}$$

$$V_{2} = \frac{kQ_{2}}{r_{2}}$$

$$= \frac{(9.0 \times 10^{9})(-2.5 \times 10^{-6} \text{ C})}{(0.15 \text{ m})}$$

$$= -1.50 \times 10^{5} \text{ V} \quad \leftarrow 2 \text{ marks}$$

$$V_{p} = V_{1} + V_{2}$$

$$= 1.93 \times 10^5 \text{ V} + -1.50 \times 10^5 \text{ V} \qquad \leftarrow 2 \text{ marks}$$
$$= 4.3 \times 10^4 \text{ V} \qquad \leftarrow 1 \text{ mark}$$

 $= 0.45 \text{ A} \leftarrow 1 \text{ mark}$

$P_r = I^2 \cdot r$	$\leftarrow 1 \text{ mark}$
$=(0.45)^2 \cdot 0.80$	
= 0.16 W	$\leftarrow 1 \text{ mark}$

- 7. Protons travelling at 2.2×10^5 m/s enter at right angles to a magnetic field. The field is produced by a 0.16 m long solenoid. A current of 5.3 A flows through the 820 turns of wire of the solenoid.
 - a) What is the magnetic field in the solenoid?

(3 marks)

$$B = \mu_0 \frac{N}{\ell} I \qquad \leftarrow 1 \text{ mark}$$
$$B = \frac{(4\pi \times 10^{-7})(820)(5.3)}{(0.16)} \quad \leftarrow 1 \text{ mark}$$
$$B = 3.4 \times 10^{-2} \text{ T} \qquad \leftarrow 1 \text{ mark}$$

b) What is the radius of curvature of the proton beam in the magnetic field of the solenoid? (4 marks)

8. A rectangular loop is suspended by a spring scale between magnetic poles. The loop is 0.60 m wide by 0.120 m high.

As the current in the loop is varied, the readings of the spring scale and current are plotted on a graph.

a) What is the weight, in newtons, of the loop? (1 mark)

≈ 1.5 N

drawing a reasonable line through y-axis and to, or beyond, last point (1 mark)

 $\frac{\Delta F}{\Delta I} \approx 0.58 \frac{\mathrm{N}}{\mathrm{A}}$ or 0.58 T · m (1 mark)

c) What is the magnitude of the magnetic field?

(2 marks)

Since the best fit line is described by

 $F_{scale} = F_{mag} + F_g$ $F_{scale} = B\ell(I) + F_g$ the slope equals $B\ell \qquad \leftarrow 1 \text{ mark}$ $\therefore 0.58 = B(0.060) \qquad \leftarrow \frac{1}{2} \text{ mark}$ $B = 9.7 \text{ T} \qquad \leftarrow \frac{1}{2} \text{ mark}$

9. A student decides to investigate how electric field varies along the line connecting two positive point charges. Charge Q_2 is greater than charge Q_1 .

Using principles of physics, describe the electric field along the line from Q_1 to Q_2 . (4 marks)

The electric field initially points to the right and decreases as you move along the line. At one point, closer to Q_1 , the electric field will be zero. Past this point, the field is pointing to the left and increases.

END OF KEY