Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Vector Kinematics in Two Dimensions and Dynamics and Vector Dynamics
2. Work, Energy and Power
and
Momentum
3. Equilibrium
4. Circular Motion
and
Gravitation
5. Electrostatics
6. Electric Circuits
7. Electromagnetism

Sub-Organizers
A, B
C, D
E
F, G
H
I

J
K, L
M, N
O, P

PART A: Multiple Choice (each question worth TWO marks)

Q	K	C	CO	PLO	Q	K	C	CO	PLO
1.	A	K	1	A1	16.	D	K	4	J3, 2
2.	C	U	1	B2	17.	D	U	4	J1, 2
3.	D	U	1	B5	18.	D	K	4	K4
4.	C	K	1	C1, 3	19.	D	U	5	L8
5.	D	U	1	D4, C2	20.	C	H	5	L6
6.	A	K	2	E4, E5	21.	A	K	5	M9
7.	B	U	1	E7	22.	B	U	6	M11
8.	C	U	2	E3, 5	23.	C	H	6	M5, 6
9.	C	U	2	E10	24.	B	K	6	P2
10.	A	K	3	F5, 6, E8	25.	C	U	7	O3, 1, 2
11.	B	U	3	H3, 2	26.	C	U	7	O4
12.	D	K	3	H4	27.	B	U	7	O6
13.	C	U	4	H5, 11	28.	D	U	7	P4
14.	B	U	4	I5, D4	29.	A	U	7	P9
15.	B	U	4	I4	30.	A	H	7	O5, P1

Multiple Choice $=\mathbf{6 0}$ marks

PART B: Written Response

Q	B	C	S	CO	PLO
1.	1	U	7	1	C8, C3, E8
2.	2	U	7	2	G3
3.	3	U	7	3	H11
4.	4	U	9	4	J9, J8
5.	5	U	7	5	L6
6.	6	U	7	6	M5, 7
7.	7	U	7	7	P11
8	8	H	5	1	A10, B2
9.	9	H	4	7	I5

$$
\begin{aligned}
\text { Multiple Choice } & =60(30 \text { questions }) \\
\text { Written Response } & =60(9 \text { questions }) \\
\text { Examination Total } & =\mathbf{1 2 0} \text { marks }
\end{aligned}
$$

LEGEND:
Q = Question Number
$\mathbf{C O}=$ Curriculum Organizer
B = Score Box Number
C = Cognitive Level
PLO = Prescribed Learning Outcome
$\mathbf{K}=$ Keyed Response $\quad \mathbf{S}=$ Score

1. A 75 kg Olympic skier takes 20 s to reach a speed of $25 \mathrm{~m} / \mathrm{s}$ from rest while descending a uniform 16° slope.

What is the coefficient of friction between the skis and the slope surface?

$$
\begin{array}{rlr}
a & =\frac{\Delta v}{\Delta t} \\
& =\frac{25 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~s}} \\
& =1.25 \mathrm{~m} / \mathrm{s}^{2} \\
m a & =m g \sin \theta-\mu m g \cos \theta \\
\begin{aligned}
a & =g \sin \theta-\mu g \cos \theta \\
\mu & =\frac{g \sin \theta-a}{g \cos \theta} \\
& =\frac{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot \sin 16^{\circ}-1.25 \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot \cos 16^{\circ}} \\
& =0.15
\end{aligned} \leftarrow \mathbf{2} \mathbf{~ m a r k s} \\
& \leftarrow \mathbf{1} \text { mark } \\
& \\
& \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{array}
$$

2. Two steel pucks are moving as shown in the diagram. They collide inelastically.

Determine the speed and direction (angle θ) of the 1.3 kg puck before the collision.

Method 1:

Cosine Law:

$$
\begin{array}{rlrl}
p_{2}^{2} & =\left(p_{T}^{\prime}\right)^{2}+p_{1}^{2}-2 p_{T}^{\prime} p_{1} \cos 30^{\circ} & \\
& =12.7^{2}+7.6^{2}-2 \times 12.7 \times 7.6 \times \cos 30^{\circ} & \\
p_{2}^{2} & =51.9 & & \leftarrow \mathbf{3} \text { marks } \\
p_{2} & =\sqrt{51.9}=7.20 \mathrm{~kg} \mathrm{~m} / \mathrm{s} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

Sine Law:

$$
\begin{aligned}
\frac{\sin \theta}{7.6} & =\frac{\sin 30^{\circ}}{7.2} \\
\sin \theta & =\frac{7.6 \times \sin 30^{\circ}}{7.2} \\
\sin \theta & =0.528 \\
\theta & =32^{\circ} \\
v_{2} & =5.5 \mathrm{~m} / \mathrm{s} \text { at } 32^{\circ}
\end{aligned}
$$

Method 2: (one variation)

$$
\left.\begin{array}{rlrl}
m_{1} v_{1} \cos 30^{\circ}+m_{2} v_{2} \cos \theta & =m_{T} v^{\prime} & & \leftarrow \mathbf{1} \text { mark } \\
4.2(1.8) \cos 30^{\circ}+1.3\left(v_{2}\right) \cos \theta & =(4.2+1.3)(2.3) & & \leftarrow \mathbf{1} \text { mark } \\
v_{2} & =\frac{4.69}{\cos \theta} & & \leftarrow \mathbf{1} \text { mark } \\
m_{1} v_{1} \sin 30^{\circ}+m_{2} v_{2} \sin \theta & =0 & & \leftarrow \mathbf{1} \text { mark } \\
4.2(1.8) \sin 30^{\circ}+1.3\left(v_{2}\right) \sin \theta & =0 & \leftarrow \mathbf{1} \text { mark } \\
v_{2} & =\frac{2.91}{\sin \theta} & \\
\frac{4.69}{\cos \theta} & =\frac{2.91}{\sin \theta} \\
\frac{\sin \theta}{\cos \theta} & =\frac{2.91}{4.69} \\
\tan \theta & =0.618 \\
\theta & =32^{\circ} \\
v_{2} & =\frac{4.69}{\cos 31.8} \\
v_{2} & =5.5 \mathrm{~m} / \mathrm{s}
\end{array}\right\} \leftarrow \mathbf{1} \text { mark } \quad \$
$$

3. A uniform 6.0 m -long boom has a mass of 55 kg . It is kept in position by a restraining cable attached three-quarters of the way along the boom.

What is the tension in this cable when the boom supports a 150 kg mass as shown?
(7 marks)

About the hinge:

$$
\begin{aligned}
\Sigma \tau=0 & \leftarrow \mathbf{1} \text { mark } \\
\tau_{\text {cable }}-\tau_{\text {mass }}-\tau_{\text {boom }}=0 & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

$(T \cos 20)\left(\frac{3}{4} \cdot 6\right)-(150(9.8) \cos 50)(6)-(55(9.8) \cos 50)\left(\frac{1}{2} \cdot 6\right)=0 \quad \leftarrow 4$ marks

$$
T=1600 \mathrm{~N} \quad \leftarrow \mathbf{1} \text { mark }
$$

4. A space shuttle is placed in a circular orbit at an altitude of $3.00 \times 10^{5} \mathrm{~m}$ above Earth's surface.

a) What is the shuttle's orbital speed?

$$
\begin{array}{rlrl}
F_{c} & =F_{g} & & \leftarrow \mathbf{1} \text { mark } \\
m \frac{v^{2}}{R} & =\frac{G M m}{R^{2}} & & \\
v^{2} & =\frac{G M}{R} & & \\
v & =\sqrt{\frac{G M}{R}} & \mathbf{2} \mathbf{~ m a} \\
& =\sqrt{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{6.68 \times 10^{6}}} & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
v & =7.73 \times 10^{3} \mathrm{~m} / \mathrm{s} & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{array}
$$

b) The space shuttle is then moved to a higher orbit in order to capture a satellite.

The shuttle's speed in this new higher orbit will have to be
\square greater than in the lower orbit.
\square less than in the lower orbit.
\square the same as in the lower orbit.
(Check one response.)
c) Using principles of physics, explain your answer to b).

As the space shuttle moves further away from the earth's centre the force of gravity acting on the shuttle decreases. Since the centripetal force is provided by the force of gravity, it must decrease as well. $\leftarrow \mathbf{2}$ marks

The smaller centripetal force generates a smaller centripetal acceleration $\leftarrow \mathbf{1}$ mark which in turn requires a smaller orbital velocity.
5. a) How much work is done in moving an electron from point X to point Y ?

$$
\begin{array}{rlrl}
W & =\Delta E p & & \leftarrow \mathbf{2} \text { marks } \\
& =\frac{k Q q}{r_{2}}-\frac{k Q q}{r_{1}} & & \leftarrow \mathbf{2} \text { marks } \\
& =\frac{9.0 \times 10^{9} \times-5.0 \times 10^{-6} \times-1.60 \times 10^{-19}}{1.00}-\frac{9.0 \times 10^{9} \times-5.0 \times 10^{-6} \times-1.60 \times 10^{-19}}{1.50} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

b) What is the potential difference between point X and point Y ?
$\Delta V=\frac{W}{q}=1.5 \times 10^{4} \mathrm{~V} \quad \leftarrow \mathbf{2}$ marks

Note: Both positive and negative answers will be accepted for \mathbf{b}).
6. A current of 1.50 A flows through the 40.0Ω resistor.

What is the potential difference of the power supply?
(7 marks)

$$
\left.\begin{array}{rlrl}
V_{3} & =I_{3} R & \\
& =1.50(40.0) & & \\
V_{3} & =60.0 \mathrm{~V} \\
V_{2} & =V_{3}=60.0 \mathrm{~V} \\
I_{2} & =\frac{V_{2}}{R_{2}}=\frac{60.0}{10.0}=6.00 \mathrm{~A} \\
I_{t} & =I_{3}+I_{2}=1.50+6.00=7.50 \mathrm{~A} \\
V_{1} & =I_{1} R_{1} & \leftarrow \mathbf{m a r k s} \\
V_{1} & =7.50(6.0) & \leftarrow \mathbf{1} \text { mark } \\
V_{1} & =45 \mathrm{~V} \\
V_{4} & =I_{4} R_{4} & & \\
& =7.50(4.0) & \leftarrow \mathbf{1} \text { mark } \\
V_{4} & =30 \mathrm{~V} \\
V_{t} & =V_{b}=V_{1}+V_{\| \mid}+V_{4} \\
& =45+60+30 \\
V_{b} & =135 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{1} \text { mark }
$$

Alternate Solution:

$$
\left.\begin{array}{rlrl}
V_{3} & =I_{3} R & \\
& =1.50(40.0) & & \\
V_{3} & =60.0 \mathrm{~V} & & \\
V_{2} & =V_{3}=60.0 \mathrm{~V} \text { marks } \\
I_{2} & =\frac{V_{2}}{R_{2}}=\frac{60.0}{10.0}=6.00 \mathrm{~A} & \leftarrow \mathbf{1} \text { mark } \\
I_{t} & =I_{3}+I_{2}=1.50+6.00=7.50 \mathrm{~A} & \leftarrow \mathbf{1} \text { mark } \\
R_{p} & =\frac{1}{\frac{1}{R_{3}}+\frac{1}{R_{2}}}=\frac{1}{\frac{1}{40.0}+\frac{1}{10.0}} \\
& =8.00 \Omega & \\
R_{T} & =6.0 \Omega+8.0 \Omega+4.0 \Omega \\
& =18.0 \Omega & \\
V_{0} & =\left(I_{0}\right)\left(R_{T}\right) \\
& =(7.50)(18.0)=135 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{2} \text { marks }
$$

7. A transformer has 840 primary and 56 secondary windings. The primary coil is connected to a 110 V ac power supply which delivers a 0.30 A current to the transformer.
a) Find the secondary voltage.

$$
\left.\begin{array}{rl}
\frac{V_{s}}{V_{p}} & =\frac{N_{s}}{N_{p}} \\
\frac{V_{s}}{110} & =\frac{56}{840} \\
V_{s} & =7.3 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{4} \text { marks }
$$

b) Find the secondary current.

$$
\left.\begin{array}{rl}
\frac{I_{p}}{I_{s}} & =\frac{N_{s}}{N_{p}} \\
\frac{0.30}{I_{s}} & =\frac{56}{840} \\
I_{s} & =4.5 \mathrm{~A}
\end{array}\right\} \leftarrow \mathbf{3} \text { marks }
$$

8. The data table shows the velocity of a car during a 5.0 s interval.

$t(\mathrm{~s})$	0.0	1.0	2.0	3.0	4.0	5.0
$v(\mathrm{~m} / \mathrm{s})$	12	15	15	18	20	21

a) Plot the data and draw a best-fit straight line.

b) Calculate the area bounded by the graph and the time axis between $t=0.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$.

$$
\text { Area }=\frac{1}{2}(a+b) c
$$

$$
\cong 85 \mathrm{~m} \quad \leftarrow \mathbf{2} \text { marks }
$$

c) What does this area represent?

The area represents the distance (displacement) travelled by the car in the time $t=0$ to $t=5 \mathrm{~s}$.

$$
\text { "Metres" only } \leftarrow \frac{1}{2} \text { mark }
$$

9. A mass is suspended by a string attached to a spring scale that initially reads 14 N as shown in Diagram 1.

The mass is pulled to the side and then released as shown in Diagram 2.

As the mass passes point Q , how will the reading on the spring scale compare to the previous value of 14 N ? Using principles of physics, explain your answer.

The reading will be greater than $14 \mathrm{~N} .\left(\right.$ by $\left.\frac{m v^{2}}{r}\right) \leftarrow 1$ mark
Initially, the net force is zero, so the spring scale reads the weight of the mass. When moving, there is a net (centripetal) force provided by the spring scale (tension in the rope) which exceeds the weight (force of gravity) of the mass so that the mass goes in a vertical circle. $\leftarrow \mathbf{3}$ marks

END OF KEY

