Physics 12 June 1999 Provincial Examination

Answer Key / Scoring Guide

	Organizers	Sub-Organizers
1.	Vector Kinematics in Two Dimensions and	Α, Β
	Dynamics and Vector Dynamics	C, D
2.	Work, Energy and Power <i>and</i>	Ε
	Momentum	F, G
3.	Equilibrium	Н
4.	Circular Motion and	Ι
	Gravitation	J
5.	Electrostatics	K, L
6.	Electric Circuits	M, N
7.	Electromagnetism	O, P

CURRICULUM:

PART A: Multiple Choice (each question worth TWO marks)

Q	K	С	CO	PLO	Q	K	С	CO	PLO
1.	С	Κ	1	C6	16.	А	Н	4	I4, A10
2.	А	U	1	C7, 8, D5	17.	D	Κ	4	J10
3.	В	U	1	C4, 7, D3	18.	С	U	4	J8, I4
4.	С	U	1	C3, 7, D1, 5	19.	D	Κ	5	L7
5.	В	U	1	C4, 8, D3, 6	20.	С	U	5	L6
6.	В	U	2	E1	21.	В	Н	5	K2, I4
7.	А	Κ	2	F2	22.	С	Κ	6	M9
8.	D	U	2	E7, F7	23.	D	U	6	N2
9.	С	U	2	G3	24.	С	Η	6	M7, 5, N2
10.	С	Κ	3	H9	25.	А	Κ	7	O3
11.	В	U	3	H2, 3	26.	С	U	7	O6
12.	D	U	3	H11	27.	А	U	7	O8, P1
13.	В	Κ	4	I3	28.	D	U	7	P4
14.	С	U	4	I4	29.	С	U	7	P9
15.	С	U	4	I4, J2	30.	D	U	7	P11

Multiple Choice = 60 marks

PART B: Written Response

Q	В	С	S	СО	PLO
1.	1	U	7	1	B 8
2.	2	U	7	2	E8
3.	3	Н	9	3	H11
4.	4	U	7	4	J9, 8, E7
5.	5	U	7	5	K8, L7, M8
6.	6	U	7	6	M11, M6, 7
7.	7	U	7	7	P5
8	8	Н	5	1	A10, E3
9.	9	Н	4	7	06

Written Response = 60 marks

EXAMINATION TOTAL	=	120 marks
Written Response	=	60 (9 questions)
Multiple Choice	=	60 (30 questions)

LEGEND:		
$\mathbf{Q} = $ Question Number	$\mathbf{B} = $ Score Box Number	\mathbf{C} = Cognitive Level
CO = Curriculum Organizer	K = Keyed Response	$\mathbf{S} = \mathbf{Score}$
PLO = Prescribed Learning Outcome		

Components: $v_{0y} = 16.4 \text{ m/s}$

$$d = v_0 t + \frac{1}{2} a t^2$$

-52 = 16.4t + $\frac{1}{2} (-9.8) t^2$
t = 5.3 s \leftarrow 4 marks

c) What is the vehicle's range,
$$R$$
?

$$R = v_x t$$

$$R = 30.9(5.3)$$

$$R = 165 \text{ m}$$

$$R = 1.6 \times 10^2 \text{ m} \quad \leftarrow 2 \text{ marks}$$

(2 marks)

E = E	$\leftarrow 1 \text{ mark}$
$E_{k} + E_{p} + E_{H} = E_{k}' + E_{p}' + E_{H}'$	$\leftarrow 2 \text{ marks}$
$\frac{1}{2}mv^2 + mgh = \frac{1}{2}m(v')^2 + E_H'$	$\leftarrow 1 \text{ mark}$
$\frac{1}{2}(45)(8.3)^2 + 45(9.8)(21) = \frac{1}{2}(45)(v')^2 + 3600$	$\leftarrow 1 \text{ mark}$
$1\ 550 + 9\ 260 = 22.5(v')^2 + 3\ 600$	\leftarrow 1 mark
<i>v</i> ′ = 18 m/s	$\leftarrow 1 \text{ mark}$

1

OR

$$E = E'$$

$$E_{k} + E_{p} + E_{H} = E_{k}' + E_{p}' + E_{H}'$$

$$E_{k} = \frac{1}{2}mv^{2} = 1550 \text{ J} \qquad \leftarrow 1 \text{ mark}$$

$$E_{p} = mgh = 9260 \text{ J} \qquad \leftarrow 1 \text{ mark}$$

$$E_{k}' = \frac{1}{2}mv^{2} = \frac{1}{2}(45)(v')^{2} \qquad \leftarrow 1 \text{ mark}$$

$$E_{H}' = 3600 \text{ J} \qquad \leftarrow 1 \text{ mark}$$

$$v' = 18 \text{ m/s} \qquad \leftarrow 1 \text{ mark}$$

3. A circus performer on a unicycle of total mass 55 kg rides across a uniform 30 kg beam. The supports are placed equal distances from the ends of the beam.

a) When he is at the position shown, determine the forces exerted by the supports on the beam. (5 marks)

$\Sigma \tau = 0$]
$0 = -30(9.8)(4) + (-55)(9.8)(5) + F_B(6)(5) + F_B(6)$	8) $\left\{ \leftarrow 3 \text{ marks} \right\}$
$F_B = 480 \text{ N}$	J
$\Sigma F = 0$]
$0 = F_A + 480 - 30(9.8) - 55(9.8)$	$\leftarrow 2 \text{ marks}$
$F_A = 350 \text{ N}$	

c) Using principles of physics, explain your answer to b).	(3 marks)
--	-----------

As the cyclist moves toward B the lever arm increases and thus there is a larger clockwise torque. In order to remain in static equilibrium, the counter-clockwise torque must increase. Since the distance is fixed, the force must increase.

$$F_{net} = ma_c$$

$$\frac{Gm_Em_s}{r^2} = \frac{m_s \cdot v^2}{r} \qquad \qquad \leftarrow 2 \text{ marks}$$

$$\therefore v = \left(\frac{Gm_E}{r}\right)^{\frac{1}{2}} \qquad \qquad \leftarrow 1 \text{ mark}$$

$$= \left(\frac{6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \cdot 5.98 \times 10^{24} \text{ kg}}{4.2 \times 10^7 \text{ m}}\right)^{\frac{1}{2}} \qquad \leftarrow 1 \text{ mark}$$

$$= 3.1 \times 10^3 \text{ m/s} \qquad \leftarrow 1 \text{ mark}$$

$$E_k = \frac{1}{2} mv^2$$

$$= \frac{1}{2} \cdot 1500 \text{ kg} \left(3.1 \times 10^3 \text{ m/s}^2\right)^2$$

$$= 7.1 \times 10^9 \text{ J} \qquad \leftarrow 2 \text{ marks}$$

$$E = \frac{V}{d} \quad \leftarrow 1 \text{ mark}$$

$$V = Ed$$

$$= 3.2 \times 10^3 \times 0.025$$

$$= 80 \text{ V} \quad \leftarrow 1 \text{ mark}$$

 $= 11.7 \text{ V} \qquad \leftarrow \frac{1}{2} \text{ mark}$

b) What is the emf of the c	(4 marks)	
$V_T = \mathbf{\mathcal{E}} - Ir$	← 1 mark	
$11.7 = \mathbf{\mathcal{E}} - 1.80(0.50)$	\leftarrow 2 marks	

 $\mathbf{\mathcal{E}} = 12.6 \text{ V} \leftarrow \mathbf{1} \text{ mark}$

7. A rectangular coil of wire containing 250 loops is placed in a magnetic field. Each loop measures 0.075 m by 0.28 m. The magnetic field changes over a time interval of 0.36 s producing an average emf of 1.3 V. What is the change in the magnetic field strength?

(7 marks)

$$\mathbf{\hat{E}} = \frac{-N\Delta\Phi}{t} \qquad \Delta\Phi = \Delta BA$$

$$\Delta B = \frac{\mathbf{\hat{E}} \cdot t}{N \cdot A} \qquad \leftarrow \mathbf{3} \text{ marks}$$

$$= \frac{1.3 \text{ V} \times 0.36}{250(0.075 \times 0.28)} \qquad \leftarrow \mathbf{3} \text{ marks}$$

$$\Delta B = 0.089 \text{ T} \qquad \leftarrow \mathbf{1} \text{ mark}$$

(Accept + or - answers)

8. A daredevil is attached by his ankles to a bungee cord and drops from the top of a bridge. The force exerted on the daredevil by the bungee cord is measured against the change in length, x, of the cord as the cord is stretched, slowing the daredevil's fall.

Force (N)	0	300	600	1 000	1 200	1 700	1 900
<i>x</i> (m)	0	5	10	15	20	25	30

a) Plot a graph of force vs. change in length on the graph below. (2 marks)

b) Using principles of physics, explain why the proton takes the path selected in a). (3 marks)

Since a proton has a positive charge it will travel in the opposite direction as the electron. The proton is also more massive than the electron, therefore the F_B will cause a smaller a_C and hence a larger radius for its path.

END OF KEY