# Physics 12 June 1998 Provincial Examination

# Answer Key / Scoring Guide

|    | <b>UKKIUUUM</b> :                       |                |  |  |  |  |
|----|-----------------------------------------|----------------|--|--|--|--|
|    | Organizers                              | Sub-Organizers |  |  |  |  |
| 1. | Vector Kinematics in Two Dimensions and | Α, Β           |  |  |  |  |
|    | Dynamics and Vector Dynamics            | C, D           |  |  |  |  |
| 2. | Work, Energy and Power <i>and</i>       | Е              |  |  |  |  |
|    | Momentum                                | F, G           |  |  |  |  |
| 3. | Equilibrium                             | Н              |  |  |  |  |
| 4. | Circular Motion<br>and                  | Ι              |  |  |  |  |
|    | Gravitation                             | J              |  |  |  |  |
| 5. | Electrostatics                          | K, L           |  |  |  |  |
| 6. | Electric Circuits                       | M, N           |  |  |  |  |
| 7. | Electromagnetism                        | O, P           |  |  |  |  |

### **CURRICULUM:**

### PART A: Multiple Choice (each question worth TWO marks)

| Q   | K | С | CO | PLO       | Q   | K | С | CO | PLO        |
|-----|---|---|----|-----------|-----|---|---|----|------------|
| 1.  | С | K | 1  | B3        | 16. | А | U | 4  | J7, E5     |
| 2.  | В | U | 1  | A6, B7    | 17. | С | Н | 4  | J9         |
| 3.  | D | U | 1  | B2        | 18. | D | Κ | 5  | K6         |
| 4.  | В | Κ | 1  | C5, 7     | 19. | D | U | 5  | К3         |
| 5.  | А | U | 1  | C3, 7, 8  | 20. | D | U | 5  | K5         |
| 6.  | С | U | 2  | E3        | 21. | D | Κ | 6  | M9         |
| 7.  | В | Κ | 2  | F1        | 22. | В | U | 6  | N2         |
| 8.  | В | U | 2  | F7        | 23. | В | Κ | 7  | P2         |
| 9.  | С | Κ | 3  | H5        | 24. | А | U | 7  | O4         |
| 10. | С | U | 3  | H11       | 25. | С | U | 7  | O7         |
| 11. | D | Η | 3  | H3, C7, 8 | 26. | D | U | 7  | O8         |
| 12. | В | Κ | 4  | J1        | 27. | С | U | 7  | P1         |
| 13. | Α | U | 4  | J2, I4    | 28. | В | U | 7  | P9         |
| 14. | D | U | 4  | J9        | 29. | А | U | 7  | P11        |
| 15. | В | U | 4  | J10       | 30. | D | Н | 7  | O6, E7, I4 |

## **Multiple Choice = 60 marks**

## PART B: Written Response

| Q  | В | С | СО | S | PLO        |
|----|---|---|----|---|------------|
| 1. | 1 | U | 1  | 7 | D5 or C3   |
| 2. | 2 | U | 2  | 7 | E7         |
| 3. | 3 | U | 3  | 7 | H11        |
| 4. | 4 | U | 4  | 7 | I14, C3, 7 |
| 5. | 5 | U | 5  | 7 | L8         |
| 6. | 6 | U | 6  | 9 | M11, N2    |
| 7. | 7 | U | 7  | 7 | P5, M5     |
| 8. | 8 | Н | 1  | 5 | A10        |
| 9. | 9 | Н | 2  | 4 | F4, G2     |

## Written Response = 60 marks

| Multiple Choice          | = | 60 (30 questions) |
|--------------------------|---|-------------------|
| Written Response         | = | 60 (9 questions)  |
| <b>EXAMINATION TOTAL</b> | = | 120 marks         |

| LEGEND:                                  |                                                   |                                |
|------------------------------------------|---------------------------------------------------|--------------------------------|
| $\mathbf{Q} = $ Question Number          | $\mathbf{B} = \mathbf{Score Box Number}$          | $\mathbf{C}$ = Cognitive Level |
| <b>CO</b> = Curriculum Organizer         | $\mathbf{K} = \mathbf{Keyed} \ \mathbf{Response}$ | $\mathbf{S} = \mathbf{Score}$  |
| <b>PLO</b> = Prescribed Learning Outcome |                                                   |                                |
|                                          |                                                   |                                |



 $m_2 = 13.3 \text{ kg} \leftarrow 1 \text{ mark}$ 



$$E_{T_A} = E_{T_B}$$

$$mgh_A + \frac{1}{2}mv_A^2 - 8\ 500\ J = mgh + \frac{1}{2}mv_B^2 \qquad \leftarrow 4\ marks$$

250 kg · 9.80 m/s<sup>2</sup> · 18.0 m + 
$$\frac{1}{2}$$
 · 250 kg · (12.0 m/s)<sup>2</sup> - 8 500 J =  $\frac{1}{2}$  250 kg ·  $v_{\rm B}^2$   $\leftarrow$  1 mark

44 100 J + 18 000 J - 8 500 J = 125 kg 
$$\cdot v_B^2$$
  $\leftarrow$  1 mark

$$\therefore v_B = 20.7 \text{ m/s} \leftarrow 1 \text{ mark}$$



Using left-hand support as fulcrum:

$$\Sigma \tau_c = \Sigma \tau_{cc}$$

$$\tau_D + \tau_s = \tau_c$$

$$F_D d_D + F_s d_s = F_{c_R} d_c$$

25 kg · 9.8 m/s<sup>2</sup> · 0.80 m + 12 kg · 9.8 m/s<sup>2</sup> · 1.9 m =  $F_{c_R}$  · 3.8 m  $\leftarrow$  3<sup>1</sup>/<sub>2</sub> marks

 $F_{c_R} = 110 \text{ N} \quad \leftarrow \frac{1}{2} \text{ mark}$  $F_{c_L} + F_{c_R} = F_g \quad \leftarrow 1 \text{ mark}$ 

$$F_{c_L} + 110 \text{ N} = 363 \text{ N} \qquad \leftarrow \frac{1}{2} \text{ mark}$$

 $F_{c_L} = 253 \text{ N} \qquad \leftarrow \frac{1}{2} \text{ mark}$ 



b) Calculate the tension in the connecting rod at this position.

(5 marks)

$$F_{net} = ma$$

$$T - F_g = m \left( \frac{4\pi^2}{T^2} r \right)$$

$$T - mg = m \frac{4\pi^2}{T^2} r$$

$$T - 6.1 \text{ kg} \cdot 9.8 \text{ m/s}^2 = \frac{6.1 \text{ kg} \cdot 4\pi^2 \cdot 1.2 \text{ m}}{(0.80 \text{ s})^2}$$

$$T - 60 \text{ N} = 452 \text{ N}$$

$$T = 510 \text{ N} \quad \leftarrow 1 \text{ mark}$$

5. Two point charges  $Q_1$  and  $Q_2$  are arranged as shown in the diagram below.



The electric potential at point P due to these charges is found to be  $1.9 \times 10^5$  V. What are the magnitude and sign of charge  $Q_1$ ? (7 marks)

| $V_p = V_1 + V_2$ $V_2 = \frac{kQ_2}{R_2}$ $= \frac{9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \cdot 2.5 \times 10^{-6} \text{ C}}{0.30 \text{ m}}$ | } ← 2 marks                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| $= 7.5 \times 10^4 \text{ V}$                                                                                                                                  |                             |
| $\therefore V_1 = V_p - V_2$                                                                                                                                   | ]                           |
| $= 1.9 \times 10^5 \text{ V} - 7.5 \times 10^4 \text{ V}$                                                                                                      |                             |
| $= 1.15 \times 10^5 \text{ V}$                                                                                                                                 |                             |
| $\therefore \frac{kQ_1}{R_1} = 1.15 \times 10^5 \text{ V}$                                                                                                     | } ← 4 marks                 |
| $\therefore Q_1 = \frac{0.60 \text{ m} \cdot 1.15 \times 10^5 \text{ V}}{9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2}$                               |                             |
| $= +7.7 \times 10^{-6} \text{ C}$                                                                                                                              | $\leftarrow 1 \text{ mark}$ |

6. The circuit shown in the diagram below consists of a 9.00 V battery and a 3.50 W light bulb.



a) If a current of 0.400 A leaves the battery, what is the internal resistance, *r*, of the battery? (5 marks)

$$P = VI$$

$$3.5 = V(0.4)$$

$$\leftarrow 2 \text{ marks}$$

$$8.75 \text{ V} = V$$

$$V_T = \mathcal{E} - Ir$$

$$8.75 = 9 - Ir$$

$$0.25 = (0.4)r$$

$$\leftarrow 3 \text{ marks}$$

$$(0.63 \Omega = r)$$

| b) | The light bulb is now replaced by a lower resistance (brighter) light bulb voltage will now be | . The terminal |
|----|------------------------------------------------------------------------------------------------|----------------|
|    | less than before.                                                                              |                |
|    | the same as before.                                                                            |                |
|    | greater than before.                                                                           |                |
|    | (Check one response.)                                                                          | (1 mark)       |

| () | Using principles of physics, explain your answer to b). | (3 marks) |
|----|---------------------------------------------------------|-----------|
| C) | Using principles of physics, explain your answer to b). | (S marks) |

The total resistance of the circuit will decrease, therefore the current through the battery will increase.

More potential will be dropped across the internal resistance, therefore the terminal voltage will decrease.

7. A single loop of wire of area  $5.0 \times 10^{-3}$  m<sup>2</sup> and resistance  $1.8 \Omega$  is perpendicular to a uniform magnetic field B. The field then decreases to zero in  $1.2 \times 10^{-3}$  s inducing an average current of  $8.3 \times 10^{-2}$  A in the loop. What was the initial value of the magnetic field B? (7 marks)

$$V = IR$$
  

$$= 8.3 \times 10^{-2} \text{ A} \cdot 1.8 \Omega$$
  

$$= 0.149 \text{ V} \quad \leftarrow 2 \text{ marks}$$
  

$$\mathbf{\mathcal{E}} = \frac{N\Delta\Phi}{\Delta t}$$
  

$$0.149 \text{ V} = \frac{-(1)(\Delta\Phi)}{1.2 \times 10^{-3} \text{ s}}$$
  

$$\Delta\Phi = -1.8 \times 10^{-4} \text{ Wb} \quad \leftarrow 3 \text{ marks}$$
  

$$\Delta\Phi = (\Delta B)A$$
  

$$\Delta B = \frac{-1.8 \times 10^{-4} \text{ Wb}}{5.0 \times 10^{-3} \text{ m}^2}$$
  

$$\Delta B = B_{final} - B_{initial} = 0 - B_{initial}$$
  

$$B_{initial} = 3.6 \times 10^{-2} \text{ T}$$

| <i>W</i> (J) | 70  | 140 | 210 | 280 | 350  |
|--------------|-----|-----|-----|-----|------|
| <i>d</i> (m) | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 |



b) Calculate the slope of the line, expressing your answer in appropriate units. (2 marks)

$$slope = \frac{\Delta W}{\Delta d} = 35 \text{ J/m} \quad \leftarrow 1\frac{1}{2} \text{ marks } (\text{units}, \frac{1}{2} \text{ mark})$$



(1 mark)

(2 marks)

The slope represents the force applied to the lawnmower.



The crumpling of the automobile decreases the acceleration experienced by the occupants by increasing the distance to stop and/or increasing the time taken to stop.

| $\Delta \boldsymbol{E}_k = \boldsymbol{F} \cdot \boldsymbol{d}$ | $\Delta \boldsymbol{P} = \boldsymbol{F} \cdot \Delta t$ |  |
|-----------------------------------------------------------------|---------------------------------------------------------|--|
| $\uparrow$ $\uparrow$                                           | $\uparrow$                                              |  |
|                                                                 |                                                         |  |

decreased increases

increases  $\Delta t$  so decreases F

#### END OF KEY