TOPICS: 1. Kinematics and Dynamics
2. Energy and Momentum
3. Equilibrium
4. Circular Motion and Gravitation
5. Electrostatics and Circuitry
6. Electromagnetism
7. Quantum Physics
8. Fluid Theory
9. AC Circuitry and Electronics

PART A: MULTIPLE-CHOICE QUESTIONS

| Q | C | T | K | S | CGR | Q | C | T | K | S |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | CGR

PART B: PROBLEMS

Q	B	C	T	S	CGR
1.	1	U	1	7	II B3, A2
2a.	2	U	2	5	III A4, A1, A6, C9
2b.	3	H	2	4	III A4, A1, A6, C9
3.	4	U	3	7	IV B8
4.	5	U	4	7	V B5, B6
5.	6	U	5	7	VII A8, A11
6.	7	U	6	7	VIII B11, B10
7.	8	H	5	4	VI B3

PART C: ELECTIVE TOPICS

Only ONE of the following sections will be chosen. Score only one set of boxes: $(9,10,11)$ $\mathbf{O R}(12,13,14) \quad \mathbf{O R}(15,16,17)$. Maximum possible score for Part C is 12.

	Q	B	C	T	S	CGR
SECTION I	1.	9	U	7	3	II A14
	2.	10	U	7	4	II A6, B5
	3.	11	U	7	5	II B6
	OR					
SECTION II	1.	12	U	8	3	III A11
	2.	13	U	8	4	III B12, C9
	3.	14	U	8	5	III A9, A2
OR						
SECTION III	1.	15	U	9	3	I B3
	2.	16	U	9	4	I A3, A5
	3.	17	U	9	5	I C7, B3
		$\begin{array}{ll} \text { Multiple-choice total }=60 & (30 \text { questions }) \\ \text { Written-response total }=60 & (10 \text { questions }) \end{array}$				
		EX	L			

KEY:	$\mathbf{Q}=$ Question	$\mathbf{B}=$ Score box number	$\mathbf{C}=$ Cognitive level
	$\mathbf{T}=$ Topic	$\mathbf{S}=$ Score	$\mathbf{C G R}=$ Curriculum Guide Reference

1. A 6.0 kg block is held at rest on a horizontal, frictionless air table. Two forces are pulling on this block in the directions shown in the diagram below.

Table Viewed from Above

What will be the magnitude of the acceleration on the 6.0 kg block at the moment it is released?

Components:

y direction
$\mathrm{F}_{\mathrm{y}}=(12.5+28.925)=41.425 \mathrm{~N} \leftarrow \mathbf{1} 1 / 2$ marks
x direction
$\mathrm{F}_{\mathrm{x}}=34.47-21.65=12.82 \mathrm{~N} \leftarrow \mathbf{1} 1 / 2$ marks
$\mathrm{F}_{\text {net }}=43.4 \mathrm{~N} \quad 2$ marks

Answer:

$$
\left.\begin{array}{rl}
\mathrm{a} & =\frac{F_{\text {net }}}{m} \\
& =\frac{43.4 \mathrm{~N}}{6.0 \mathrm{~kg}} \\
& =7.2 \mathrm{~m} / \mathrm{s}^{2}
\end{array}\right\} \mathbf{2} \text { marks }
$$

SEE ALTERNATE SOLUTION OVER:

Alternate Solution:

If viewed as a 'hanging' mass, no penalty:

- this approach is more difficult

Then:

Components:

$$
\mathrm{F}_{\mathrm{x}}=12.82 \mathrm{~N} \leftarrow \mathbf{1} 1 / 2 \mathbf{m a r k s}
$$

$\mathrm{F}_{\mathrm{y}}=58.8-41.43=17.37 \mathrm{~N}$ down $\leftarrow \mathbf{1} 1 / 2$ marks

$$
\mathrm{F}_{\mathrm{net}}=21.6 \mathrm{~N} 2 \mathrm{marks}
$$

$$
\left.\begin{array}{rl}
\mathrm{a} & =\frac{\mathrm{F}_{\text {net }}}{\mathrm{m}} \\
& =\frac{21.6 \mathrm{~N}}{6.0 \mathrm{~kg}} \\
& =3.60 \mathrm{~m} / \mathrm{s}^{2}
\end{array}\right\} \mathbf{2} \text { marks }
$$

2. A 4000 kg space vehicle consists of a 2500 kg main capsule and a 1500 kg probe. The space vehicle is travelling at $120 \mathrm{~m} / \mathrm{s}$ when an explosion occurs between the capsule and the probe. As a result, the probe moves forward at $140 \mathrm{~m} / \mathrm{s}$, as shown in the diagram below.

Before

After

a) (i) What is the speed of the main capsule after the explosion?
(3 marks)

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}^{\prime}+\mathrm{m}_{2} \mathrm{v}_{2}^{\prime} \\
\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}=\mathrm{m}_{1} \mathrm{v}_{1}^{\prime}+\mathrm{m}_{2} \mathrm{v}_{2}^{\prime}
\end{array}\right\} \leftarrow \mathbf{1} \text { mark } \\
& \left.\begin{array}{l}
(4000)(120)=(1500)(140)+(2500) \mathrm{v}_{2}^{\prime} \leftarrow \mathbf{1} \text { mark } \\
270000=2500 \mathrm{v}_{2}^{\prime} \\
\mathrm{v}_{2}^{\prime}=108 \mathrm{~m} / \mathrm{s}
\end{array}\right\} \leftarrow \mathbf{1} \text { mark } \\
& \therefore \text { speed }=1.1 \times 10^{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(ii) What is the magnitude of the impulse given to the probe?

$$
\Delta \mathrm{p}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{0} \quad \leftarrow \mathbf{1} \text { mark }
$$

$$
\left.\begin{array}{l}
\mathrm{F} \Delta \mathrm{t}=\Delta \mathrm{p} \\
=1500(140)-1500(120) \\
=3.0 \times 10^{4} \mathrm{~N} \cdot \mathrm{~s}
\end{array}\right\} \quad \leftarrow \mathbf{1} \text { mark }
$$

b) Define impulse and briefly explain why the impulse on the probe is equal in magnitude to the impulse on the main capsule.

Impulse is a force acting for a given time interval, or a change in momentum. ($\mathbf{1}$ mark)
(i) Newton's Third Law states that for every force there is an equal and opposite reacting force. As the time of the explosion is equal for both the probe and the capsule, the impulse ($\mathrm{F} \Delta \mathrm{t}$) must be equal and opposite also.

OR
3 marks
(ii) Impulse is equal to a change in momentum. As momentum is conserved, the momentum gained by the probe must equal the momentum lost by the capsule
3. A uniform beam 6.0 m long, and with a mass of 75 kg , is hinged at A . The supporting cable keeps the beam horizontal.

If the maximum tension the cable can withstand is $2.4 \times 10^{3} \mathrm{~N}$, what is the maximum mass of the load?

$$
\begin{aligned}
& \tau_{\mathrm{CW}}=\tau_{\mathrm{CCW}} \quad \leftarrow \mathbf{1} \text { mark } \\
& \left.\begin{array}{rl}
\mathrm{F} \perp & =\left(2.4 \times 10^{3}\right) \sin 37^{\circ} \\
& =1444.3 \mathrm{~N}
\end{array}\right\} \leftarrow 2 \text { marks }
\end{aligned}
$$

\therefore Using torque about A :

$$
3.0(735)+3.5\left(\mathrm{~F}_{\mathrm{L}}\right)=1444.3(2.0) \leftarrow 3 \text { marks }
$$

$$
\left.\begin{array}{rl}
2205+3.5\left(\mathrm{~F}_{\mathrm{L}}\right) & =2888.6 \mathrm{~N} \\
3.5\left(\mathrm{~F}_{\mathrm{L}}\right) & =683 \mathrm{~N} \\
\mathrm{Load} & =195.4 \mathrm{~N} \\
\text { Mass } & =\frac{\mathrm{F}_{\mathrm{L}}}{9.8} \\
& =19.9 \mathrm{~kg} \\
& =20 \mathrm{~kg}
\end{array}\right\} \mathbf{1} \text { mark }
$$

4. A 900 kg satellite which is travelling at $8600 \mathrm{~m} / \mathrm{s}$ around a planet of mass $8.1 \times 10^{25} \mathrm{~kg}$ has an orbital radius of $7.3 \times 10^{7} \mathrm{~m}$. What is the total orbital energy of this satellite relative to infinity?

$$
\left.\begin{array}{c}
\mathrm{E}_{\mathrm{p}}=\frac{-\mathrm{GMm}}{\mathrm{r}}=-6.66 \times 10^{10} \mathrm{~J} \quad \leftarrow \mathbf{3} \text { marks } \\
\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}=3.33 \times 10^{10} \mathrm{~J} \quad \leftarrow \mathbf{3} \text { marks } \\
\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{\mathrm{p}}+\mathrm{E}_{\mathrm{k}}=-3.3 \times 10^{10} \mathrm{~J} \\
\text { or } \\
\mathrm{E}_{\mathrm{T}}=\frac{\mathrm{E}_{\mathrm{p}}}{2}=-\mathrm{E}_{\mathrm{k}}=-3.3 \times 10^{10} \mathrm{~J}
\end{array}\right\} \mathbf{1} \text { mark }
$$

5. What is the power dissipated by the 3.0Ω resistor in the circuit below?

$$
\begin{aligned}
\frac{1}{\mathrm{R}} & =\frac{1}{14}+\frac{1}{14} & & \\
\mathrm{R}_{\mathrm{p} 1} & =7.0 \Omega & & \leftarrow \mathbf{1} \text { mark } \\
\frac{1}{\mathrm{R}} & =\frac{1}{24}+\frac{1}{24}+\frac{1}{12}=\frac{4}{24} & & \\
\mathrm{R}_{\mathrm{p} 2} & =6.0 \Omega & & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{T}}=7.0 \Omega+3.0 \Omega+6.0 \Omega
$$

$$
=16.0 \Omega \quad \leftarrow \mathbf{1} \text { mark }
$$

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12}{16.0}=0.75 \mathrm{~A} \quad \leftarrow \mathbf{2} \text { marks }
$$

$$
\mathrm{P}=\mathrm{I}^{2} \mathrm{R}=0.75^{2} \mathrm{~A} \times 3.0 \quad \leftarrow \mathbf{2} \text { marks }
$$

$$
=1.69 \mathrm{~W}
$$

6. A motor is connected to 117 V and draws a current of 32.5 A when it first starts up. At its normal operating speed, the motor draws a current of 4.20 A .
a) What is the resistance of the armature coil?
(3 marks)

$$
\begin{array}{rlrl}
\mathrm{V} & =\mathrm{IR} & \leftarrow 1 / 2 \text { mark } \\
117 & =(32.5) \mathrm{R} & \leftarrow 2 \text { marks } \\
\mathrm{R} & =3.60 \Omega & & \leftarrow 1 / 2 \text { mark }
\end{array}
$$

b) What is the back emf developed at normal operating speed?

$$
\begin{aligned}
\mathrm{V} & =\mathrm{E}-\mathrm{IR} & & \leftarrow 1 \frac{1}{2} \text { marks } \\
& =117-(4.20)(3.60) & & \leftarrow 2 \text { marks } \\
\mathrm{V} & =102 \mathrm{~V} & & \leftarrow 1 / 2 \text { mark }
\end{aligned}
$$

7. In a cathode-ray tube, electrons are accelerated from the cathode towards the anode by an accelerating voltage V_{a}. After passing through the anode, the electrons are deflected by the two oppositelycharged parallel plates.

If the accelerating voltage V_{a} is increased, will the deflection increase, decrease, or remain the same? Using principles of physics, explain your answer.
(4 marks)

The deflection y will decrease.
If V_{a} is increased, the electrons are given a greater kinetic energy: e.g., $\mathrm{V}_{\mathrm{a}}=\frac{\Delta \mathrm{E}_{\mathrm{k}}}{\mathrm{q}}$. Hence, the electrons are moving faster, so they spend less time between the plates. A force accelerates the electrons transversely between the plates; however, as the acceleration occurs for a shorter time, their deflection is reduced; e.g., $y=\frac{1}{2} a t^{2}$.

PART C: ELECTED TOPICS

SECTION I: Quantum Physics

1. What is the de Broglie wavelength of a proton travelling at $5.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& \left.\begin{array}{rl}
\lambda & =\frac{\mathrm{h}}{\mathrm{p}} \\
& =\frac{\mathrm{h}}{\mathrm{mv}}
\end{array}\right\} \leftarrow \mathbf{1} 1 / 2 \text { marks } \\
& \left.\begin{array}{l}
=\frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 5.0 \times 10^{7}} \\
=7.94 \times 10^{-15} \mathrm{~m}
\end{array}\right\} \quad \leftarrow \mathbf{1} 1 / 2 \text { marks }
\end{aligned}
$$

2. a) What is the energy of a photon of light with a frequency of $5.0 \times 10^{16} \mathrm{~Hz}$?

$$
\begin{aligned}
\mathrm{E} & =\mathrm{hf} \\
& =\left(4.14 \times 10^{-15}\right)\left(5.0 \times 10^{16}\right) \\
& =207 \mathrm{eV}
\end{aligned}
$$

or

$$
3.31 \times 10^{-17} \mathrm{~J} \quad \leftarrow \mathbf{2} \text { marks }
$$

b) Through what potential difference must electrons be accelerated to have the same amount of energy as that of the above photon?

$$
\begin{aligned}
& \mathrm{E}=\mathrm{qV} \\
& \mathrm{~V}=\frac{\mathrm{E}}{\mathrm{q}}=\frac{3.31 \times 10^{-17} \mathrm{~J}}{1.6 \times 10^{-19}}=207 \mathrm{~V} \leftarrow \mathbf{2} \text { marks }
\end{aligned}
$$

SECTION I: Continued

3. What is the wavelength of photons emitted when electrons in the $n=5$ energy level drop to the $\mathrm{n}=2$ energy level in hydrogen atoms?

For $\mathrm{n}=5$

$$
\mathrm{E}_{\mathrm{n}=5}=\frac{-13.6 \mathrm{eV}}{5^{2}}=-0.54 \mathrm{eV}
$$

For $\mathrm{n}=2$

$$
\mathrm{E}_{\mathrm{n}=2}=\frac{-13.6 \mathrm{eV}}{2^{2}}=-3.40 \mathrm{eV}
$$

$$
\left.\begin{array}{rl}
\Delta \mathrm{E}_{\text {photon }} & =\mathrm{E}_{5}-\mathrm{E}_{2} \\
& =-0.54 \mathrm{eV}-(-3.40 \mathrm{eV})\} 1 / 2 \text { mark } \\
& =2.86 \mathrm{eV}
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
\lambda & =\frac{\mathrm{hc}}{\Delta \mathrm{E}} \\
& =\frac{\left(4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2.86 \mathrm{eV}} \\
& =4.3 \times 10^{-7} \mathrm{~m}(435 \mathrm{~nm})
\end{array}\right\} \mathbf{1} 1 / 2 \text { marks }
$$

SECTION II: Fluid Theory

1. A fire hose of area $4.0 \times 10^{-4} \mathrm{~m}^{2}$ is connected to a fire hydrant. Water enters the hydrant at a speed of $3.5 \mathrm{~m} / \mathrm{s}$ through an underground pipe of area $5.6 \times 10^{-3} \mathrm{~m}^{2}$. What is the speed of the water in the fire hose?
(3 marks)

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \leftarrow \mathbf{1} \text { mark } \\
& \left(5.6 \times 10^{-3}\right)(3.5)=\left(4.0 \times 10^{-4}\right)\left(\mathrm{v}_{2}\right) \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

$$
\mathrm{v}=49 \mathrm{~m} / \mathrm{s} \quad \leftarrow \mathbf{1} \mathbf{~ m a r k}
$$

2. Very fine dust particles are suspended in air at a temperature of $22^{\circ} \mathrm{C}$. If the rms speed of the dust particles is $4.5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$, what is their average mass?

$$
\begin{aligned}
& \mathrm{E}_{k}=\frac{3}{2} \mathrm{kT} \quad \leftarrow \mathbf{1} \text { mark } \\
& \left.\begin{array}{rl}
\frac{1}{2} & \mathrm{mv}^{2}=\frac{3}{2} \mathrm{kT} \quad \leftarrow \mathbf{1} \text { mark } \\
\mathrm{m} & =\frac{3 \mathrm{kT}}{\mathrm{v}^{2}} \\
& =\frac{3\left(1.38 \times 10^{-23}\right)(295)}{\left(4.5 \times 10^{-3}\right)^{2}} \\
& =6.0 \times 10^{-16} \mathrm{~kg}
\end{array}\right\} \leftarrow 2 \text { marks }
\end{aligned}
$$

SECTION II: Continued

3. The Goodyear airship contains $5400 \mathrm{~m}^{3}$ of helium having a density of $0.179 \mathrm{~kg} / \mathrm{m}^{3}$. The solid parts of the airship have a weight of $5.10 \times 10^{4} \mathrm{~N}$. How much extra weight can the airship carry in equilibrium if the density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$?

$$
\begin{aligned}
\mathrm{F}_{\mathrm{B}} & =\rho_{\mathrm{A}} \mathrm{Vg} & & \leftarrow \mathbf{1} 1 / 2 \text { marks } \\
\mathrm{W}_{\mathrm{He}} & =\rho_{\mathrm{He}} \mathrm{Vg} & & \leftarrow \mathbf{1} \text { mark } \\
\mathrm{F}_{\mathrm{B}} & =\mathrm{W}_{\mathrm{He}}+\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{x}} & & \leftarrow \mathbf{1} 1 / 2 \text { marks } \\
\mathrm{W}_{\mathrm{x}} & =7.8 \times 10^{3} \mathrm{~N} & & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

SECTION III: AC Circuitry and Electronics

1. A coil has an inductance of 0.420 H . Determine the inductive reactance of the coil if $120 \mathrm{~V}_{\mathrm{rms}}$ at 50.0 Hz is applied to it.

$$
\begin{array}{ll}
\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL} & \leftarrow \mathbf{1} \text { mark } \\
=2 \pi\left(50.0 \mathrm{~s}^{-1}\right)(0.420 \mathrm{H}) & \leftarrow \mathbf{1} \text { mark } \\
=132 \Omega & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

2. Calculate the maximum charge that can be stored in the $6.00 \mu \mathrm{~F}$ capacitor shown below. (4 marks)

(1) Series $\frac{1}{\mathrm{C}_{\mathrm{T}}}=\frac{1}{3}+\frac{1}{6}$

$$
\begin{aligned}
& =\frac{2}{6}+\frac{1}{6}=\frac{3}{6} \\
\therefore C_{T} & =\frac{6}{3}=2.0 \mu \mathrm{~F}
\end{aligned}
$$

2 marks
(2) Series $\mathrm{Q}_{\mathrm{T}}=\mathrm{C}_{\mathrm{T}} \mathrm{V}_{\mathrm{T}}$

$$
=(2.0 \mu \mathrm{~F})(12.0 \mathrm{~V})
$$

$$
=24.0 \mu \mathrm{C}
$$

(3)

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{T}} & =\mathrm{Q}_{6}=\mathrm{Q}_{3} \\
\therefore \mathrm{Q}_{6} & =24.0 \mu \mathrm{C}
\end{aligned}
$$

SECTION III: Continued

3. What is the voltage drop across the inductor in the LCR circuit shown in the diagram below, when the applied voltage is $75 \mathrm{~V}_{\mathrm{rms}}$ at a frequency of 1500 Hz ?

$$
\left.\begin{array}{rl}
\mathrm{X}_{\mathrm{C}} & =\frac{1}{2 \pi \mathrm{fC}} \\
& =\frac{1}{2 \pi(1500)\left(2.0 \times 10^{-6} \mathrm{~F}\right)} \\
& =53.1 \Omega \\
\mathrm{X}_{\mathrm{L}} & =2 \pi \mathrm{fL} \\
& =2 \pi(1500 \mathrm{~Hz})\left(25 \times 10^{-3} \mathrm{H}\right) \\
& =236 \Omega \\
\therefore \mathrm{Z} & =\sqrt{67^{2}+(236-53)^{2}}=195 \Omega \quad \leftarrow \mathbf{2} \text { marks } \\
11 / 2 \text { marks } \\
\therefore \mathrm{I} & =\frac{\mathrm{V}}{\mathrm{Z}}=\frac{75 \mathrm{~V}}{195 \Omega}=0.385 \mathrm{~A} \\
\therefore \mathrm{~V}_{\mathrm{L}} & =\mathrm{IX} \mathrm{I}_{\mathrm{L}}=0.385 \mathrm{~A}(236 \Omega)=91 \mathrm{~V}
\end{array}\right\} \mathbf{1} 1 / 2 \text { marks }
$$

END OF KEY

