Physics 12

January 2000 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Vector Kinematics in Two Dimensions and
Dynamics and Vector Dynamics
2. Work, Energy and Power
and
Momentum
3. Equilibrium
4. Circular Motion
and
Gravitation
5. Electrostatics
6. Electric Circuits
7. Electromagnetism

Sub-Organizers
A, B

C, D
E
F, G
H
I

J
K, L
M, N
O, P

PART A: Multiple Choice (each question worth TWO marks)

Q	K	C	CO	PLO	Q	K	C	CO	PLO
1.	B	K	1	B1	16.	D	K	4	J3, A10
2.	D	U	1	A6	17.	B	U	4	J9
3.	C	U	1	B8	18.	C	H	4	J10, 2
4.	C	K	1	D5	19.	A	K	5	K6
5.	C	U	2	E2	20.	C	U	5	L6, 3
6.	D	K	2	F1	21.	C	U	5	K5, L8
7.	B	U	2	F4	22.	D	U	6	M6
8.	B	U	2	F7, 6	23.	B	U	6	M5, N2
9.	C	U	2	G3	24.	C	K	7	O2
10.	A	K	3	H4	25.	D	U	7	O3
11.	A	U	3	H2	26.	B	U	7	O4
12.	C	H	3	H5, 11	27.	C	U	7	O8
13.	C	K	4	I1	28.	A	U	7	P1
14.	C	U	4	I4	29.	C	U	7	P9
15.	A	U	4	I4, 5	30.	B	H	7	P6

Multiple Choice $\mathbf{=} \mathbf{6 0}$ marks

PART B: Written Response

Q	B	C	S	CO	PLO
1.	1	U	7	1	D5, C8, D3
2.	2	U	7	2	E7, 10, 2
3.	3	U	7	3	H3
4.	4	U	7	4	J2, B2
5.	5	U	7	5	L6, 5
6.	6	U	9	6	M11, N2
7.	7	U	7	7	P5, P3
8	8	H	5	1	A10, E7
9.	9	H	4	1	C8, D4

Multiple Choice $=60$ (30 questions)
Written Response $=60$ (9 questions)
EXAMINATION TOTAL = $\mathbf{1 2 0}$ marks

[^0]1. Two masses are connected by a light string over a frictionless massless pulley. There is a coefficient of friction of 0.27 between mass m_{1} and the horizontal surface.

a) Draw and label a free body diagram showing the forces acting on mass m_{1}.

b) What is the acceleration of mass m_{2} ?

$$
\begin{aligned}
a & =\frac{F_{\text {net }}}{m} & & \leftarrow \frac{1}{2} \text { mark } \\
& =\frac{m_{2} g-\mu m_{1} g}{\left(m_{1}+m_{2}\right)} & & \leftarrow \mathbf{3} \frac{1}{2} \text { marks } \\
& =\frac{4.0 \mathrm{~kg}(9.8 \mathrm{~N} / \mathrm{kg})-(0.27)(2.0 \mathrm{~kg})(9.8 \mathrm{~N} / \mathrm{kg})}{(2.0 \mathrm{~kg}+4.0 \mathrm{~kg})} & & \leftarrow \frac{1}{2} \text { mark } \\
& =5.7 \mathrm{~m} / \mathrm{s}^{2} & & \leftarrow \frac{1}{2} \text { mark }
\end{aligned}
$$

2. A 170 kg cart and rider start from rest on a 20.0 m high incline.

a) How much energy is transformed to heat?
(5 marks)

$$
\begin{aligned}
\Delta E & =0 & & \\
E p & =E_{k}+\text { Heat } & & \leftarrow \mathbf{2} \text { marks } \\
m g h & =\frac{1}{2} m v^{2}+\text { Heat } & & \leftarrow \mathbf{1} \text { mark } \\
170(9.8) 20.0 & =\frac{1}{2}(170) 16.0^{2}+E_{h} & & \leftarrow \mathbf{1} \text { mark } \\
33320 & =21760+E_{h} & & \\
1.16 \times 10^{4} \mathrm{~J} & =E_{h} & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{aligned}
$$

b) What is the average force of friction acting on the cart?
$E_{h}=$ work done by friction

$$
11560=F_{f} \cdot d
$$

$$
\therefore F_{f}=\frac{11560}{60.0}
$$

$$
F_{f}=193 \mathrm{~N}
$$

$$
F_{f}=190 \mathrm{~N} \leftarrow \mathbf{2} \text { marks }
$$

3. A 35 kg traffic light is suspended from two cables as shown in the diagram.

What is the tension in each of these cables?

Component Method:

$$
\begin{aligned}
\Sigma F_{x} & =0 \\
T_{1} \cos 50^{\circ} & =T_{2} \cos 30^{\circ} \\
T_{1} & =T_{2} \frac{\cos 30^{\circ}}{\cos 50^{\circ}} \\
\Sigma F_{y} & =0 \\
T_{1} \sin 50^{\circ}+T_{2} \sin 30^{\circ} & =35(9.8) \\
\left(T_{2} \frac{\cos 30^{\circ}}{\cos 50^{\circ}}\right) \sin 50^{\circ}+T_{2} \sin 30^{\circ} & =343 \\
T_{2} & =\frac{343}{1.03+0.5} \\
T_{2} & =224 \mathrm{~N} \\
\mathrm{~T}_{1} & =224 \frac{\cos 30^{\circ}}{\cos 50^{\circ}} \\
& =302 \mathrm{~N}
\end{aligned}
$$

Vector Method:

$\left.\begin{array}{rl}\frac{\sin 80^{\circ}}{F_{g}} & =\frac{\sin 60^{\circ}}{T_{1}} \\ T_{1} & =\frac{\sin 60^{\circ}}{\sin 80^{\circ}} \cdot F_{g} \\ & =0.879 \cdot 35 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \\ & =3.0 \times 10^{2} \mathrm{~N}\end{array}\right\} \mathbf{1} \frac{1}{2}$ marks

$$
\begin{array}{rlrl}
F=m g & =(35 \mathrm{~kg})(9.8 \mathrm{~N} / \mathrm{kg})=343 \mathrm{~N} & \leftarrow \mathbf{1} \text { mark } \\
\frac{\sin 80^{\circ}}{F_{g}} & =\frac{\sin 40^{\circ}}{T_{2}} & & \\
T_{2} & =2.2 \times 10^{2} \mathrm{~N} & \mathbf{1} \frac{\text { marks }}{2}
\end{array}
$$

4. A 5.0 kg rock dropped near the surface of Mars reaches a speed of $15 \mathrm{~m} / \mathrm{s}$ in 4.0 s .
a) What is the acceleration due to gravity near the surface of Mars?

$$
\begin{aligned}
a & =\frac{\Delta v}{\Delta t} & & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{15}{4.0} & & \leftarrow \frac{1}{2} \text { mark } \\
& =3.8 \mathrm{~m} / \mathrm{s}^{2} & & \leftarrow \frac{1}{2} \text { mark }
\end{aligned}
$$

OR

$$
\begin{aligned}
d & =v_{\text {ave }} \times t \\
& =7.5 \times 4=30 \mathrm{~m} \quad \leftarrow \frac{1}{2} \text { mark } \\
v^{2} & =v_{0}^{2}+2 a d \quad \leftarrow \mathbf{1} \text { mark } \\
15^{2} & =2(a)(30) \\
a & =3.8 \mathrm{~m} / \mathrm{s}^{2} \quad \leftarrow \frac{1}{2} \text { mark }
\end{aligned}
$$

b) Mars has an average radius of $3.38 \times 10^{6} \mathrm{~m}$. What is the mass of Mars?

$$
\begin{aligned}
F_{g} & =\frac{G M m}{R^{2}} & & \leftarrow \mathbf{1} \text { mark } \\
m / g & =\frac{G M m}{R^{2}} & & \leftarrow \mathbf{1} \text { mark } \\
\therefore M & =\frac{g R^{2}}{G} & & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{3.8 \times\left(3.38 \times 10^{6}\right)^{2}}{6.67 \times 10^{-11}} & & \leftarrow \mathbf{1} \text { mark } \\
& =6.5 \times 10^{23} \mathrm{~kg} & & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

5. A charge q of $30.0 \mu \mathrm{C}$ is moved from point X to point Y .

How much work is done on the $30.0 \mu \mathrm{C}$ charge? $\left(1 \mu \mathrm{C}=1 \times 10^{-6} \mathrm{C}\right)$

$$
\begin{aligned}
W & =\Delta E & & \leftarrow \mathbf{1} \text { mark } \\
& =E_{p_{y}}-E_{p_{x}} & & \leftarrow \mathbf{2} \text { marks } \\
& =\frac{k Q q}{r_{y}}-\frac{k Q q}{r_{x}} & & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
& =\frac{9.00 \times 10^{9} \cdot 70.0 \times 10^{-6} \cdot 30.0 \times 10^{-6}}{3.00}-\frac{9.00 \times 10^{9} \cdot 70.0 \times 10^{-6} \cdot 30.0 \times 10^{-6}}{8.00} & & \leftarrow \mathbf{2} \text { marks } \\
& =(6.3-2.4) \mathrm{J} & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{aligned}
$$

6. The circuit shown consists of an 8.00 V battery and two light bulbs. Each light bulb dissipates 5.0 W. Assume that the light bulbs have a constant resistance. Switch S is open.

a) If a current of 1.50 A flows in the circuit, what is the internal resistance r of the battery?

Resistance Solution: $P=I^{2} R$	Voltage Solution: $P=I V$	Power Solution: $P_{T}=I V$	
$\therefore R_{b u l b}=\frac{P}{I^{2}}$	$\left.\begin{array}{rl} 5 & =1.5 \mathrm{~V} \\ V_{\text {bulb }} & =3.3 \mathrm{~V} \end{array}\right\} \leftarrow \mathbf{1} \mathrm{mark}$	$=1.5(8)$	
$=\frac{5.0}{(1.50)^{2}}$	$\left.V_{\text {terminal }}=3.3 \times 2\right)$	$=12 \mathrm{~W}$	$\leftarrow 1$ mark
$=2.22 \Omega \leftarrow \mathbf{1}$ mark	$V_{\text {terminal }}=6.7$,	$P_{\text {bulbs }}=2(5)=10$	$\leftarrow 1$ mark
$R_{T}=\frac{\varepsilon}{I}$	$\left.\begin{array}{rl} V_{\text {terminal }} & =\varepsilon-I r \\ 6.7 & =8-1.5 r \end{array}\right\} \leftarrow \mathbf{1} \text { mark }$	$P_{r}=12-10$	$\leftarrow 1$ mark
$=\frac{8.00}{1.50}$	$r=0.89 \Omega \leftarrow \mathbf{1}$ mark	$P_{r}=2 \mathrm{~W}$	
		$P=I^{2} R$	
$=5.33 \Omega \leftarrow \mathbf{1}$ mark		2	
$\therefore r=R_{T}-2 \cdot\left(R_{\text {bulb }}\right)$		$r=\frac{2}{1.5^{2}}$	
$=5.33-2(2.22) \leftarrow \mathbf{1}$ mark		$=0.89 \Omega$	$\leftarrow 1$ mark
$=0.89 \Omega \quad \leftarrow \mathbf{1}$ mark			

b) The switch S is now closed. DELETED

$$
I=1.50 \mathrm{~A}
$$

Lamp A will now be
i) \square brighter.
\square the same brightness as before.
\square dimmer.
(Check one response.)

The battery's terminal voltage will now be
ii) \square greater than before.
\square the same as before.
(7) less than before.
(Check one response.)
c) Using principles of physics, explain your answers to b). DELETED

Total circuit resistance decreases when the switch is closed. Therefore, the circuit current increases. $\leftarrow 1$ mark
Since $P=I^{2} R$, the power dissipated by Lamp A increases and it will therefore be brighter. $\leftarrow \mathbf{1}$ mark
Since the circuit current has increased, the voltage drop across the internal resistance increases and the terminal voltage drops. $\leftarrow 1$ mark
7. The diagram shows a coil with 25 windings and dimensions 0.15 m by 0.20 m . Its plane is perpendicular to a magnetic field of magnitude 0.60 T .

If the coil rotates 90° in 4.17×10^{-2} s so that its plane is now parallel to the magnetic field, what average emf is induced during this time?

$$
\begin{array}{rlrl}
\mathcal{E} & =-N \frac{\Delta \Phi}{\Delta t} \quad \text { (ignore direction term) } & \leftarrow \mathbf{2} \text { marks } \\
\mathcal{E} & =\frac{N \times \Delta \Phi}{\Delta t} & & \\
& =\frac{N \times\left(\Phi^{\prime}-\Phi\right)}{\Delta t} & & \\
& =\frac{N \times(0-\mathrm{BA})}{\Delta t} & \leftarrow \mathbf{4} \text { marks } \\
& =\frac{25 \times 0.60 \times 0.15 \times 0.20}{4.17 \times 10^{-2}} & & \\
& =10.8 \mathrm{~V} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

8. A student plots the graph below, showing the kinetic energy E_{k} of a motorbike versus the square of its velocity v^{2}.
$E_{k}(\mathrm{~J})$

a) What is the slope of this graph?

$$
\begin{aligned}
\text { slope } & =\frac{\Delta E_{k}}{\Delta v^{2}} \\
& =\frac{20000 \mathrm{~J}}{400 \mathrm{~m}^{2} / \mathrm{s}^{2}} \\
& =50 \mathrm{~J} / \mathrm{m}^{2} / \mathrm{s}^{2} \quad \leftarrow \mathbf{2} \text { marks } \\
& \text { or } 50 \mathrm{~kg}
\end{aligned}
$$

b) What does the slope represent?

From the graph: $E_{k}=k v^{2}, \quad \therefore\left(E_{k}=50 v^{2}\right) \leftarrow \mathbf{1}$ mark
But $E_{k}=\frac{1}{2} m v^{2}$, therefore the slope represents one half the mass of the motorbike. $\leftarrow \mathbf{1}$ mark
c) Using the axes below, sketch the graph of kinetic energy E_{k} versus velocity v for this motorbike. There is no need to plot any data points.
$E_{k}(\mathrm{~J})$

9. A classmate insists a book cannot be held against a wall by pushing horizontally as shown in Diagram A. He insists that there must be a vertical force component, provided by pushing against the book from below, as shown in Diagram B.

Using principles of physics, show that the situation in Diagram A is reasonable.
A normal force opposite to the applied force exists. i.e., Newton's third law. $\leftarrow \mathbf{1}$ mark Some friction force $\left(F_{f}\right)$ exists. $\leftarrow 1$ mark
The friction force depends on the normal force. $\leftarrow 1$ mark
With a sufficiently large enough applied force the friction force can oppose the force of gravity. $\leftarrow \mathbf{1}$ mark

END OF KEY

[^0]: LEGEND:
 Q = Question Number
 $\mathbf{C O}=$ Curriculum Organizer
 B = Score Box Number
 C = Cognitive Level
 PLO $=$ Prescribed Learning Outcome

