Physics 12 January 2000 Provincial Examination

Answer Key / Scoring Guide

	connicoloui.				
	Organizers	Sub-Organizers			
1.	Vector Kinematics in Two Dimensions and	Α, Β			
	Dynamics and Vector Dynamics	C, D			
2.	Work, Energy and Power <i>and</i>	Ε			
	Momentum	F, G			
3.	Equilibrium	Н			
4.	Circular Motion and	Ι			
	Gravitation	J			
5.	Electrostatics	K, L			
6.	Electric Circuits	M, N			
7.	Electromagnetism	O, P			

CURRICULUM:

PART A: Multiple Choice (each question worth TWO marks)

Q	K	С	CO	PLO	Q	K	С	CO	PLO
1.	В	Κ	1	B 1	16.	D	K	4	J3, A10
2.	D	U	1	A6	17.	В	U	4	J9
3.	С	U	1	B8	18.	С	Н	4	J10, 2
4.	С	Κ	1	D5	19.	А	Κ	5	K6
5.	С	U	2	E2	20.	С	U	5	L6, 3
6.	D	Κ	2	F1	21.	С	U	5	K5, L8
7.	В	U	2	F4	22.	D	U	6	M6
8.	В	U	2	F7, 6	23.	В	U	6	M5, N2
9.	С	U	2	G3	24.	С	Κ	7	O2
10.	А	Κ	3	H4	25.	D	U	7	O3
11.	Α	U	3	H2	26.	В	U	7	O4
12.	С	Н	3	H5, 11	27.	С	U	7	O 8
13.	С	Κ	4	I1	28.	А	U	7	P1
14.	С	U	4	I4	29.	С	U	7	P9
15.	А	U	4	I4, 5	30.	В	Н	7	P6

Multiple Choice = 60 marks

PART B: Written Response

Q	В	С	S	CO	PLO
1.	1	U	7	1	D5, C8, D3
2.	2	U	7	2	E7, 10, 2
3.	3	U	7	3	H3
4.	4	U	7	4	J2, B2
5.	5	U	7	5	L6, 5
6.	6	U	9	6	M11, N2
7.	7	U	7	7	P5, P3
8	8	Н	5	1	A10, E7
9.	9	Н	4	1	C8, D4

Written Response = 60 marks

EXAMINATION TOTAL	=	120 marks
Written Response	=	60 (9 questions)
Multiple Choice	=	60 (30 questions)

LEGEND:		
\mathbf{Q} = Question Number	$\mathbf{B} = $ Score Box Number	$\mathbf{C} = \mathbf{Cognitive Level}$
CO = Curriculum Organizer	K = Keyed Response	$\mathbf{S} = \mathbf{Score}$
PLO = Prescribed Learning Outcome		

1. Two masses are connected by a light string over a frictionless massless pulley. There is a coefficient of friction of 0.27 between mass m_1 and the horizontal surface.

a) Draw and label a free body diagram showing the forces acting on mass m_1 . (2 marks)

b) What is the acceleration of mass m_2 ?

(5 marks)

$$a = \frac{F_{net}}{m} \qquad \qquad \leftarrow \frac{1}{2} \text{ mark}$$

= $\frac{m_2 g - \mu m_1 g}{(m_1 + m_2)} \qquad \qquad \leftarrow 3\frac{1}{2} \text{ marks}$
= $\frac{4.0 \text{ kg}(9.8 \text{ N/kg}) - (0.27)(2.0 \text{ kg})(9.8 \text{ N/kg})}{(2.0 \text{ kg} + 4.0 \text{ kg})} \qquad \leftarrow \frac{1}{2} \text{ mark}$
= $5.7 \text{ m/s}^2 \qquad \leftarrow \frac{1}{2} \text{ mark}$

b)	What is the average force of friction acting on the cart?	(2 marks)
ς,		(=

 E_h = work done by friction

 $11560 = F_f \cdot d$

 $\therefore F_f = \frac{11\,560}{60.0}$ $F_f = 193 \text{ N}$ $F_f = 190 \text{ N} \quad \leftarrow 2 \text{ marks}$

3. A 35 kg traffic light is suspended from two cables as shown in the diagram.

Component Method:

 $\Sigma F_x = 0$ $T_1 \cos 50^\circ = T_2 \cos 30^\circ$ $T_1 = T_2 \frac{\cos 30^\circ}{\cos 50^\circ}$ $\Sigma F_y = 0$ $T_1 \sin 50^\circ + T_2 \sin 30^\circ = 35(9.8)$ $\left(T_2 \frac{\cos 30^\circ}{\cos 50^\circ}\right) \sin 50^\circ + T_2 \sin 30^\circ = 343$ $T_2 = \frac{343}{1.03 + 0.5}$ $T_2 = 224 \text{ N}$ $T_1 = 224 \frac{\cos 30^\circ}{\cos 50^\circ}$ = 302 N

$$\frac{\sin 80^{\circ}}{F_{g}} = \frac{\sin 60^{\circ}}{T_{1}}$$

$$T_{1} = \frac{\sin 60^{\circ}}{\sin 80^{\circ}} \cdot F_{g}$$

$$= 0.879 \cdot 35 \text{ kg} \cdot 9.8 \text{ m/s}^{2}$$

$$= 3.0 \times 10^{2} \text{ N}$$

$$F = mg = (35 \text{ kg})(9.8 \text{ N/kg}) = 343 \text{ N} \quad \leftarrow 1 \text{ mark}$$
$$\frac{\sin 80^{\circ}}{F_g} = \frac{\sin 40^{\circ}}{T_2}$$
$$T_2 = 2.2 \times 10^2 \text{ N}$$
$$\begin{cases} 1 \frac{1}{2} \text{ marks} \\ 1 \frac{1}{2} \text{ marks} \end{cases}$$

- 4. A 5.0 kg rock dropped near the surface of Mars reaches a speed of 15 m/s in 4.0 s.
 - a) What is the acceleration due to gravity near the surface of Mars? (2 marks)

$$a = \frac{\Delta v}{\Delta t} \qquad \leftarrow 1 \text{ mark}$$
$$= \frac{15}{4.0} \qquad \leftarrow \frac{1}{2} \text{ mark}$$
$$= 3.8 \text{ m/s}^2 \qquad \leftarrow \frac{1}{2} \text{ mark}$$

OR

 $d = v_{ave} \times t$ = 7.5×4 = 30 m $\leftarrow \frac{1}{2}$ mark $v^2 = v_0^2 + 2ad \leftarrow 1$ mark 15² = 2(a)(30) a = 3.8 m/s² $\leftarrow \frac{1}{2}$ mark

b)	Mars has an average radius of	f 3.38×10^6 m. What is the mass of Mars?	(5 marks)
	$F_g = \frac{GMm}{R^2}$	← 1 mark	
	$mg = \frac{GMm}{R^2}$	\leftarrow 1 mark	
	$\therefore M = \frac{gR^2}{G}$	\leftarrow 1 mark	
	$=\frac{3.8\times \left(3.38\times 10^6\right)^2}{6.67\times 10^{-11}}$	← 1 mark	
	$= 6.5 \times 10^{23} \text{ kg}$	← 1 mark	

6. The circuit shown consists of an 8.00 V battery and two light bulbs. Each light bulb dissipates 5.0 W. Assume that the light bulbs have a constant resistance. Switch S is open.

a) If a current of 1.50 A flows in the circuit, what is the internal resistance r of the battery? (4 marks)

Resistance Solution: $P = I^2 R$	Voltage Solution: $P = IV$	Power Solution: $P_T = IV$
$\therefore R_{bulb} = \frac{P}{I^2}$	$5 = 1.5 \text{ V}$ $\left\{ \leftarrow 1 \text{ mark} \right\}$	= 1.5(8)
$=\frac{5.0}{(1.50)^2}$	$V_{bulb} = 3.3 \text{ V}$ $V_{terminal} = 3.3 \times 2$	$= 12 \text{ W} \leftarrow 1 \text{ mark}$
(1.50) $= 2.22 \ \Omega \leftarrow 1 \ \text{mark}$	$V_{terminal} = 6.7$ $\begin{cases} \leftarrow 1 \text{ mark} \end{cases}$	$P_{bulbs} = 2(5) = 10 \leftarrow 1 \text{ mark}$
$R_T = \frac{\mathbf{E}}{I}$	$V_{terminal} = \mathbf{\mathcal{E}} - Ir$ 6.7 = 8 - 1.5r $\left\{ \leftarrow 1 \text{ mark} \right\}$	$P_r = 12 - 10 \leftarrow 1 \text{ mark}$
$=\frac{8.00}{1.50}$	$r = 0.89 \ \Omega \leftarrow 1 \ \text{mark}$	$P_r = 2 \text{ W}$
$= 5.33 \Omega \leftarrow 1 \text{mark}$		$P = I^2 R$
$\therefore r = R_T - 2 \cdot (R_{bulb})$		$r = \frac{2}{1.5^2}$
$= 5.33 - 2(2.22) \leftarrow 1$ $= 0.89 \Omega \leftarrow 1$	mark mark	$= 0.89 \Omega \leftarrow 1 \text{ mark}$

b)	The switch S is now closed. DELETED	
	E = 8.00 V r $I = 1.50 A$	
	Lamp A will now be	(1 mark)
	 i) i brighter. i the same brightness as before. i dimmer. 	
	(Check one response.)	
	The battery's terminal voltage will now be	(1 mark)
	 ii) greater than before. iii) the same as before. iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
	(Check one response.)	

c)	Using principles of physics, explain your answers to b).	DELETED	(3 marks)
----	--	---------	-----------

Total circuit resistance decreases when the switch is closed. Therefore, the circuit current increases. \leftarrow 1 mark

Since $P = I^2 R$, the power dissipated by Lamp A increases and it will therefore be brighter. $\leftarrow 1 \text{ mark}$

Since the circuit current has increased, the voltage drop across the internal resistance increases and the terminal voltage drops. \leftarrow 1 mark

7. The diagram shows a coil with 25 windings and dimensions 0.15 m by 0.20 m. Its plane is perpendicular to a magnetic field of magnitude 0.60 T.

If the coil rotates 90° in 4.17×10^{-2} s so that its plane is now parallel to the magnetic field, what average emf is induced during this time? (7 marks)

$$\mathbf{\mathcal{E}} = -N \frac{\Delta \Phi}{\Delta t} \quad (\text{ignore direction term}) \quad \leftarrow 2 \text{ marks}$$

$$\mathbf{\mathcal{E}} = \frac{N \times \Delta \Phi}{\Delta t}$$

$$= \frac{N \times (\Phi' - \Phi)}{\Delta t}$$

$$= \frac{N \times (0 - BA)}{\Delta t}$$

$$= \frac{25 \times 0.60 \times 0.15 \times 0.20}{4.17 \times 10^{-2}} \quad \leftarrow 4 \text{ marks}$$

$$= 10.8 \text{ V}$$

$$= 11 \text{ V} \quad \leftarrow 1 \text{ mark}$$

8. A student plots the graph below, showing the kinetic energy E_k of a motorbike versus the square of its velocity v^2 .

a) What is the slope of this graph?

(2 marks)

(2 marks)

From the graph: $E_k = kv^2$, $\therefore (E_k = 50 v^2) \leftarrow 1$ mark But $E_k = \frac{1}{2}mv^2$, therefore the slope represents one half the mass of the motorbike. $\leftarrow 1$ mark

9. A classmate insists a book cannot be held against a wall by pushing horizontally as shown in Diagram A. He insists that there must be a vertical force component, provided by pushing against the book from below, as shown in Diagram B.

A normal force opposite to the applied force exists. i.e., Newton's third law. $\leftarrow 1$ mark Some friction force (F_f) exists. $\leftarrow 1$ mark

The friction force depends on the normal force. $\,\leftarrow\, 1\,mark$

With a sufficiently large enough applied force the friction force can oppose the force of gravity. \leftarrow 1 mark

END OF KEY