

JANUARY 1999

PROVINCIAL EXAMINATION

MINISTRY OF EDUCATION

PHYSICS 12

GENERAL INSTRUCTIONS

1. Insert the stickers with your Student I.D. Number (PEN) in the allotted spaces above and on the back cover of this booklet. Under no circumstance is your name or identification, other than your Student I.D. Number, to appear on this booklet.
2. Ensure that in addition to this examination booklet, you have an Examination Response Form. Follow the directions on the front of the Response Form.
3. Disqualification from the examination will result if you bring books, paper, notes or unauthorized electronic devices into the examination room.
4. All multiple-choice answers must be entered on the Response Form using an HB pencil. Multiple-choice answers entered in this examination booklet will not be marked.
5. For each of the written-response questions, write your answer in the space provided in this booklet.
6. When instructed to open this booklet, check the numbering of the pages to ensure that they are numbered in sequence from page one to the last page, which is identified by

END OF EXAMINATION.
7. At the end of the examination, place your Response Form inside the front cover of this booklet and return the booklet and your Response Form to the supervisor.

THIS PAGE INTENTIONALLY BLANK

PHYSICS 12 PROVINCIAL EXAMINATION

Value

Suggested
 Time

1. This examination consists of two parts:

PART A:	30 multiple-choice questions worth two marks each	60
PART B:	9 written-response questions	60

Total: 120 marks 120 minutes
2. Aside from an approved calculator, electronic devices, including dictionaries and pagers, are not permitted in the examination room.
3. The last three pages inside the back cover contain the Table of Constants, Mathematical Equations, Formulae, and Rough Work for Multiple-Choice. These pages may be detached for convenient reference prior to writing this examination.
4. Rough-work space has been incorporated into the space allowed for answering each writtenresponse question. You may not need all of the space provided to answer each question.
5. A calculator is essential for the Physics $\mathbf{1 2}$ Provincial Examination. The calculator must be a hand-held device designed primarily for mathematical computations involving logarithmic and trigonometric functions and may also include graphing functions. Computers, calculators with a QWERTY keyboard, and electronic writing pads will not be allowed. Students must not bring any external devices to support calculators such as manuals, printed or electronic cards, printers, memory expansion chips or cards, or external keyboards. Students may have more than one calculator available during the examination. Calculators may not be shared and must not have the ability to either transmit or receive electronic signals. In addition to an approved calculator, students will be allowed to use rulers, compasses, and protractors during the examination.
6. a) Final answers must include appropriate units.
b) Marks will not be deducted for answers expressed to two or three significant figures.
c) In this examination the zero in a number such as 30 shall be considered to be a significant zero.
7. You are expected to communicate your knowledge and understanding of physics principles in a clear and logical manner. Partial marks will be awarded for steps and assumptions leading to a solution. Full marks will not be awarded for providing only a final answer.

If you are unable to determine the value of a quantity required in order to proceed, you may assume a reasonable value and continue toward the solution. Such a solution, however, may not be eligible for full marks.
8. The time allotted for this examination is two hours.

THIS PAGE INTENTIONALLY BLANK

Value: 60 marks (2 marks per question)
INSTRUCTIONS: For each question, select the best answer and record your choice on the Response Form provided. Using an HB pencil, completely fill in the circle that has the letter corresponding to your answer.

1. Which of the following is a vector quantity?
A. work
B. electric field
C. kinetic energy
D. potential energy
2. An object is launched over level ground at 35° above the horizontal with an initial speed of $52 \mathrm{~m} / \mathrm{s}$. What is the time of flight?
A. 5.3 s
B. 6.1 s
C. 8.7 s
D. 11 s
3. A boat shown below travels at $4.2 \mathrm{~m} / \mathrm{s}$ relative to the water, in a river flowing at $2.8 \mathrm{~m} / \mathrm{s}$.

At what angle θ must the boat head to reach the destination directly across the river?
A. 34°
B. 42°
C. 48°
D. 56°
4. A block is on a frictionless incline.

Which of the following is a correct free body diagram for the block?
A.

B.

C.

D.

5. A cart on a frictionless surface is attached to a hanging mass of 8.2 kg .

If this system accelerates at $3.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass m of the cart?
A. $\quad 6.0 \mathrm{~kg}$
B. 15 kg
C. 23 kg
D. 31 kg
6. A cyclist increases his kinetic energy from 1100 J to 5200 J in 12 s . His power output during this time is
A. 92 W
B. 260 W
C. 340 W
D. 430 W
7. Which of the following best represents the momentum of a small car travelling at a city speed limit?
A. $\quad 1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B. $10000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C. $100000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D. $1000000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
8. A 0.080 kg tennis ball travelling east at $15 \mathrm{~m} / \mathrm{s}$ is struck by a tennis racquet, giving it a velocity of $25 \mathrm{~m} / \mathrm{s}$, west. What are the magnitude and direction of the impulse given to the ball?

	MAGNITUDE	DIRECTION
A.	$0.80 \mathrm{~N} \cdot \mathrm{~s}$	Eastward
B.	$0.80 \mathrm{~N} \cdot \mathrm{~s}$	Westward
C.	$3.2 \mathrm{~N} \cdot \mathrm{~s}$	Eastward
D.	$3.2 \mathrm{~N} \cdot \mathrm{~s}$	Westward

9. A body is in rotational equilibrium when
A. $\quad \Sigma \tau=0$
B. $\Sigma F=0$
C. $\Sigma p=0$
D. $\Sigma E_{k}=0$
10. A 110 kg object is supported by two ropes attached to the ceiling. What is the tension T in the right-hand rope?

A. 460 N
B. 540 N
C. 930 N
D. 1300 N
11. A 35 kg uniform plank is balanced at one end by a 55 kg student as shown.

What is the overall length of this plank?
A. 2.6 m
B. $\quad 3.3 \mathrm{~m}$
C. 5.4 m
D. 6.7 m
12. Which of the following diagrams shows the instantaneous velocity v and centripetal force F for an object in uniform circular motion.
A.

B.

C.

D.

13. A 1.2 m long pendulum reaches a speed of $4.0 \mathrm{~m} / \mathrm{s}$ at the bottom of its swing.

What is the tension in the string at this position?
A. 11 N
B. 29 N
C. 40 N
D. 69 N
14. A 1200 kg car rounds a flat circular section of road at $20 \mathrm{~m} / \mathrm{s}$ as shown in the diagram.

The coefficient of friction between the car tires and the road surface is 0.65 . What minimum friction force is required for the car to follow this curve?
A. $\quad 3.7 \times 10^{3} \mathrm{~N}$
B. $5.6 \times 10^{3} \mathrm{~N}$
C. $7.6 \times 10^{3} \mathrm{~N}$
D. $1.2 \times 10^{4} \mathrm{~N}$
15. A satellite's orbit is maintained by a
A. normal force.
B. frictional force.
C. centrifugal force.
D. gravitational force.
16. What is the gravitational field strength on the surface of a planetoid with a mass of $7.4 \times 10^{22} \mathrm{~kg}$ and a radius of $1.7 \times 10^{6} \mathrm{~m}$.
A. $\quad 0.69 \mathrm{~N} / \mathrm{kg}$
B. $\quad 1.7 \mathrm{~N} / \mathrm{kg}$
C. $\quad 9.8 \mathrm{~N} / \mathrm{kg}$
D. $2.9 \times 10^{6} \mathrm{~N} / \mathrm{kg}$
17. A 1500 kg satellite is in a stable orbit at an altitude of $4.0 \times 10^{5} \mathrm{~m}$ above Earth's surface. What is the satellite's total energy in this orbit?
A. $-8.8 \times 10^{10} \mathrm{~J}$
B. $-4.4 \times 10^{10} \mathrm{~J}$
C. $4.4 \times 10^{10} \mathrm{~J}$
D. $5.0 \times 10^{10} \mathrm{~J}$
18. The diagram shows the electric field lines near two point charges, L and R. Identify the polarity of these point charges.

	POLARITY OF L	POLARITY OF R
A.	Negative	Negative
B.	Negative	Positive
C.	Positive	Negative
D.	Positive	Positive

19. An electron orbits a nucleus which carries a charge of $+9.6 \times 10^{-19} \mathrm{C}$. If the electron's orbital radius is $2.0 \times 10^{-10} \mathrm{~m}$, what is its electric potential energy?
A. $-6.9 \times 10^{-18} \mathrm{~J}$
B. $-3.5 \times 10^{-8} \mathrm{~J}$
C. 43 J
D. $2.2 \times 10^{11} \mathrm{~J}$
20. Which household electrical appliance consumes the least energy in a typical month?
A. Stove
B. Dryer
C. Clock
D. Refrigerator
21. What is the power output of the 6.0Ω resistor in the diagram?

A. 36 W
B. 54 W
C. 90 W
D. 150 W
22. A 12 V power supply is connected to an 8.0Ω resistor for 50 s . How much charge passes through the resistor?
A. 1.9 C
B. 75 C
C. 900 C
D. 4800 C
23. Which of the following diagrams best shows the magnetic field lines between the poles of two permanent magnets?
A.

B.

C.

D.

24. A wire carrying 12 A of current is placed in a magnetic field of strength 0.63 T .

What are the magnitude and direction of the magnetic force acting on the wire?

	FORCE	DIRECTION
A.	1.1 N	down the page
B.	1.1 N	up the page
C.	1.9 N	down the page
D.	1.9 N	up the page

25. A particle having a charge of $3.2 \times 10^{-19} \mathrm{C}$ follows a circular path of 0.45 m radius while travelling at a speed of $1.2 \times 10^{4} \mathrm{~m} / \mathrm{s}$ in a 0.78 T magnetic field. What is the mass of the particle?
A. $\quad 7.8 \times 10^{-28} \mathrm{~kg}$
B. $\quad 9.4 \times 10^{-24} \mathrm{~kg}$
C. $1.1 \times 10^{-19} \mathrm{~kg}$
D. $3.0 \times 10^{-15} \mathrm{~kg}$
26. A 460 -turn solenoid having a diameter of 0.024 m is 0.14 m long. What is the magnetic field at the centre of the solenoid when a 13 A current flows through it?
A. 0 T
B. $5.4 \times 10^{-2} \mathrm{~T}$
C. $3.1 \times 10^{-1} \mathrm{~T}$
D. $6.3 \times 10^{-1} \mathrm{~T}$
27. A conducting rod is moving perpendicular to a uniform magnetic field of 0.23 T at a velocity of $9.2 \mathrm{~m} / \mathrm{s}$. What emf is generated during this motion?

A. 0 V
B. 0.025 V
C. 0.32 V
D. 0.53 V
28. A rectangular coil measuring 0.12 m by 0.080 m is placed perpendicular to a 0.85 T magnetic field as shown.

What is the magnetic flux through the coil?
A. 0 Wb
B. $8.2 \times 10^{-3} \mathrm{~Wb}$
C. $6.8 \times 10^{-2} \mathrm{~Wb}$
D. $1.0 \times 10^{-1} \mathrm{~Wb}$
29. A single loop of wire of radius 0.23 m is placed in a 0.75 T magnetic field as shown. The magnetic field is changed to a strength of 0.50 T in the opposite direction in 0.61 s .

Before

After

What is the average emf induced in the coil?
A. 0.068 V
B. 0.094 V
C. 0.34 V
D. 0.47 V
30. With the electromagnet turned off, electrons in a cathode ray tube strike the centre of the screen as shown.

When the electromagnet is turned on, where will the electron beam now strike the screen?
A. 1
B. 2
C. 3
D. 4

THIS PAGE INTENTIONALLY BLANK

INSTRUCTIONS: 1. Rough-work space has been incorporated into the space allowed for answering each written-response question. You may not need all of the space provided to answer each question.
2. a) Final answers must include appropriate units.
b) Marks will not be deducted for answers expressed to two or three significant figures.
c) In this examination the zero in a number such as 30 shall be considered to be a significant zero.
3. You are expected to communicate your knowledge and understanding of physics principles in a clear and logical manner. Partial marks will be awarded for steps and assumptions leading to a solution.
4. If you are unable to determine the value of a quantity required in order to proceed, you may assume a reasonable value and continue toward the solution. Such a solution, however, may not be eligible for full marks.
5. Full marks will NOT be awarded for providing only a final answer.

1. Two objects are connected as shown. The 12 kg cart is on a frictionless 42° incline while the 15 kg block is on a horizontal surface having a coefficient of friction $\mu=0.23$.

Determine the acceleration of the system of masses.
(7 marks)

ANSWER:
acceleration:
2. Starting from rest, a farmer pushed a cart 12 m . The graph shows the force F which he applied, plotted against the distance d.

a) How much work did the farmer do moving the cart 12 m ?
b) After the farmer had pushed the 240 kg cart 12 m , it was moving with a velocity of $2.2 \mathrm{~m} / \mathrm{s}$. What was the cart's kinetic energy?
c) What was the efficiency of this process?
(2 marks)

ANSWER:

a) work:
b) kinetic energy:
c) efficiency:
3. A 6.0 m uniform beam of mass 25 kg is suspended by a cable as shown. An 85 kg object hangs from one end.

What is the tension in the cable?

ANSWER:
tension:
4. The moon Titan orbits the planet Saturn with a period of $1.4 \times 10^{6} \mathrm{~s}$. The average radius of this orbit is $1.2 \times 10^{9} \mathrm{~m}$.
a) What is Titan's centripetal acceleration?
(2 marks)
b) Calculate Saturn's mass.

ANSWER:

a) acceleration:
b) mass:
5. Two charges are positioned as shown in the diagram below.

a) Find the magnitude and direction of the electric field at A . (Note: $1.0 \mu \mathrm{C}=1.0 \times 10^{-6} \mathrm{C}$) (4 marks)
b) A charge placed at A experiences a force of $4.0 \times 10^{-3} \mathrm{~N}$ towards the right. What are the magnitude and polarity of this charge?
(3 marks)

ANSWER:

a) magnitude of electric field: \qquad direction of electric field: \qquad
b) charge: \qquad
6. The cell shown delivers a 1.50 A current to the external circuit and has a terminal voltage of 2.70 V .

a) What is the emf of the cell?
(4 marks)
b) The 1.80Ω external resistance is replaced by other resistors and the current and terminal voltage are measured in each case. Which graph best represents terminal voltage V_{T} versus current I as these resistors are changed?

Graph I

Graph II

Graph III

\square Graph I
\square Graph II
\square Graph III
(Check one response.)
c) Using principles of physics, explain your answer to b).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ANSWER:

a) emf: \qquad
7. An electric device operates on 9.0 V ac and has a total resistance of 21Ω. An ideal transformer is used to change the incoming line voltage of 120 V ac to the operating voltage of 9.0 V ac .
a) Is the transformer a step-up or step-down transformer?
(1 mark)
b) What is the current in the primary side?

ANSWER:
b) current:
8. A student collects data from the path of a projectile similar to that shown in the diagram.

The student records the following data for horizontal displacement from the initial launch position as a function of time.

$d_{x}(\mathrm{~cm})$	0.0	0.5	0.9	1.5	1.9	2.5	3.1
$t(\mathrm{~s})$	0.000	0.020	0.040	0.060	0.080	0.100	0.120

a) Plot a graph of d_{x} vs. t on the graph below.

b) Calculate the slope of the line, expressing the answer in appropriate units.
c) Based on this data and graph, make a statement about the behaviour of projectiles.
\qquad
\qquad

ANSWER:
b) slope: \qquad
9. Consider the collision between the vehicles in the photograph below.

The collision is inelastic. Define inelastic. Give at least two pieces of evidence that show this to be an inelastic collision.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gravitational constant .. $\quad G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity at the surface of Earth (for the purposes of this examination) $\quad g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

Earth
radius

$$
\begin{aligned}
& =6.38 \times 10^{6} \mathrm{~m} \\
& =1.50 \times 10^{11} \mathrm{~m} \\
& =8.61 \times 10^{4} \mathrm{~s} \\
& =3.16 \times 10^{7} \mathrm{~s} \\
& =5.98 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

radius of orbit about Sun ... $=1.50 \times 10^{11} \mathrm{~m}$
period of rotation
period of revolution about Sun
mass

Moon

$$
\begin{aligned}
& \text { radius } \\
& =1.74 \times 10^{6} \mathrm{~m} \\
& \text { radius of orbit about Earth } \\
& =3.84 \times 10^{8} \mathrm{~m} \\
& \text { period of rotation } \\
& =2.36 \times 10^{6} \mathrm{~s} \\
& \text { period of revolution about Earth } \\
& =2.36 \times 10^{6} \mathrm{~s} \\
& \text { mass } \\
& =7.35 \times 10^{22} \mathrm{~kg}
\end{aligned}
$$

Sun

$$
\text { mass.. } \quad=1.98 \times 10^{30} \mathrm{~kg}
$$

Speed of light
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

You may detach this page for convenient reference. Exercise care when tearing along perforations.

For Right-angled Triangles:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \sin \theta=\frac{b}{c} \quad \cos \theta=\frac{a}{c} \quad \tan \theta=\frac{b}{a}
\end{aligned}
$$

$$
\text { area }=\frac{1}{2} a b
$$

For All Triangles:

$$
\begin{aligned}
& \text { area }=\frac{1}{2} \text { base } \times \text { height } \\
& \sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}
\end{aligned}
$$

Sine Law: $\quad \frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}$

Cosine Law: $c^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{C}$

Circle:

Circumference $=2 \pi r$

$$
\text { Area }=\pi r^{2}
$$

Sphere:

Surface area $=4 \pi r^{2}$

Volume $=\frac{4}{3} \pi r^{3}$

Quadratic Equation:

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vector Kinematics in Two Dimensions:

$$
\begin{array}{ll}
v=v_{0}+a t & \bar{v}=\frac{v+v_{0}}{2} \\
v^{2}=v_{0}^{2}+2 a d & d=v_{0} t+\frac{1}{2} a t^{2}
\end{array}
$$

Vector Dynamics:

$$
\begin{aligned}
& F_{\text {net }}=m a \quad F_{\mathrm{g}}=m g \\
& F_{\mathrm{fr}}=\mu F_{\mathrm{N}}
\end{aligned}
$$

Work, Energy, and Power:

$$
\begin{array}{ll}
W=F d & E_{\mathrm{p}}=m g h \\
E_{\mathrm{k}}=\frac{1}{2} m v^{2} & P=\frac{W}{t}
\end{array}
$$

Momentum:

$$
p=m v \quad \Delta p=F \Delta t
$$

Equilibrium:

$$
\tau=F d
$$

Circular Motion:

$$
a_{\mathrm{c}}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}
$$

Gravitation:

$$
F=G \frac{m_{1} m_{2}}{r^{2}} \quad E_{\mathrm{p}}=-G \frac{m_{1} m_{2}}{r}
$$

You may detach this page for convenient reference. Exercise care when tearing along perforations.

Electrostatics:

$$
\begin{array}{ll}
F=k \frac{Q_{1} Q_{2}}{r^{2}} & E=\frac{F}{Q} \\
\Delta V=\frac{\Delta E_{\mathrm{p}}}{Q} & E=\frac{\Delta V}{d} \\
E_{\mathrm{p}}=k \frac{Q_{1} Q_{2}}{r} & V=\frac{k Q}{r}
\end{array}
$$

Electric Circuits:

$$
\begin{array}{ll}
I=\frac{Q}{t} & V=I R \\
V_{\text {terminal }}=\mathcal{E} \pm I r & P=I V
\end{array}
$$

Electromagnetism:

$$
\begin{array}{ll}
F=B I l & F=Q v B \\
B=\mu_{0} n I=\mu_{0} \frac{N}{l} I & \mathcal{E}=B l v \\
\Phi=B A & \mathcal{E}=-N \frac{\Delta \Phi}{\Delta t} \\
V_{\text {back }}=\varepsilon-I r & \\
\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}}=\frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{I_{\mathrm{p}}}{I_{\mathrm{s}}} &
\end{array}
$$

You may detach this page for convenient reference. Exercise care when tearing along perforations.

PHYSICS 12

January 1999

Course Code $=\mathrm{PH}$

PHYSICS 12

January 1999

Score for
Question 1:
1. $\frac{(7)}{}$

Score for Question 8:
8.
(5)
Score for
Question 2:
2. $\frac{}{(7)}$

Score for Question 9:
9.

Course Code $=$ PH

Score for
Question 3:
3.
(7)

Score for Question 4:
4.
(7)

Score for Question 5:
5.
(7)

Score for

 Question 6:6. \qquad

Score for Question 7:
7.
(7)

