Physics 12 August 2006 — Form A Provincial Examination — Answer Key

Cognitive Processes K = Knowledge U = Understanding H = Higher Mental Processes		Question Types 35 = Multiple Choice (MC) 6 = Written Response (WR)
Topics	Prescribed Learning Outcomes (PLOs)	Weightings
1. Vector Kinematics in Two Dimensions and Dynamics and Vector Dynamics	A, B C, D	9 % 9 %
2. Work, Energy and Power <i>and</i> Momentum	E F, G	$egin{array}{c} 6 \ \% \ 6 \ \% \end{array}$
3 Equilibrium	Н	12 %

I J

K, L

M, N

O, P

- Equilibrium
 Circular Motion
- and Gravitation
- 5. Electrostatics
- 6. Electric Circuits
- 7. Electromagnetism

Question Number	Keyed Response	Cognitive Process	Mark	Topic	PLO	Question Type
Tumber	Response	1100035	Mark	Topic	TLO	турс
1.	В	K	2	1	A2	MC
2.	С	U	2	1	B2	MC
3.	А	U	2	1	B 8	MC
4.	В	Κ	2	1	C1	MC
5.	В	U	2	1	D5	MC
6.	В	U	2	1	D6	MC
7.	С	U	2	2	E7	MC
8.	В	U	2	2	E8	MC
9.	В	U	2	2	F4	MC
10.	D	U	2	2	F4	MC
11.	С	U	2	2	G3	MC
12.	D	Κ	2	3	H4, 8	MC
13.	D	U	2	3	H3	MC
14.	С	U	2	3	H5	MC
15.	А	U	2	3	H5	MC

8 %

8 %

12 %

12 %

18 %

Question	Keyed	Cognitive				Question
Number	Response	Process	Mark	Topic	PLO	Туре
16.	А	Κ	2	4	I3	MC
17.	С	U	2	4	I4	MC
18.	В	U	2	4	15	MC
19.	С	U	2	4	J9	MC
20.	А	Н	2	4	J10	MC
21.	С	Κ	2	4	J4	MC
22.	С	U	2	5	K2	MC
23.	В	U	2	5	L5	MC
24.	В	U	2	5	L6	MC
25.	В	U	2	5	L7	MC
26.	С	U	2	6	M6	MC
27.	D	U	2	6	M5, 7	MC
28.	В	U	2	6	M11, 5	MC
29.	С	U	2	6	M9, 2	MC
30.	А	Κ	2	7	O1	MC
31.	D	U	2	7	O6	MC
32.	С	U	2	7	O5, D3	MC
33.	С	U	2	7	P3	MC
34.	С	U	2	7	P6, 5	MC
35.	А	U	2	7	P11	MC

Physics 12 August 2006 Provincial Examination —Written-Response Key / Scoring Guide

Cognitive Processes K = Knowledge	Question Types		
$\mathbf{U} = \mathbf{U}$ nderstanding		6 = Written Response (WR)	
\mathbf{H} = Higher Mental Processes			
Topics	Prescribed Learning Outcomes (PLOs)	Weightings	
1. Vector Kinematics in Two Dimensions and Dynamics and Vector Dynamics	A, B C, D	9 % 9 %	
2. Work, Energy and Power <i>and</i> Momentum	E F, G	6 % 6 %	
3. Equilibrium	Н	12 %	
4. Circular Motion and Gravitation	I J	8 % 8 %	
5. Electrostatics	K, L	12 %	
6. Electric Circuits	M, N	12 %	
7. Electromagnetism	O, P	18 %	

Question Number	Keyed Response	Cognitive Process	Mark	Торіс	PLO	Question Type
1.	_	Н	5	1	B8	WR
2.	_	U	5	3	H11	WR
3.	_	Н	6	5	L4	WR
4.	_	U	5	7	O6; E7	WR
5.	_	Н	5	1	C8	WR
6.	_	Н	4	6	M7, 4	WR

1. (5 marks)

A projectile is launched from a cliff top at 20 m/s, 35° above the horizontal as shown below. The projectile hits the ground 3.7 s after it is launched.

 $d_y = (20\sin 35^\circ) 3.7 + \frac{1}{2} (-9.8) 3.7^2 \leftarrow 2 \text{ marks}$

 $d_{v} = -25 \text{ m}$

height of cliff = 25 m \leftarrow 1 mark

Note to markers: Accept positive or negative answer.

$$d_x = (20\cos 35^\circ) 3.7 \quad \leftarrow 1 \text{ mark}$$

 $d_x = 61 \,\mathrm{m} \qquad \leftarrow 1 \,\mathrm{mark}$

A 4.0 m long steel beam is supported 3.0 m from a hinge by a cable attached as shown.

$$\Sigma \tau_A = 0$$

 $\therefore 150 \sin 40^{\circ} \cdot 3.0 = F_g \cdot \sin 65^{\circ} \cdot 2.0 \qquad \qquad \leftarrow \mathbf{3} \text{ marks}$

 $\therefore 150 \text{ N} \cdot \sin 40^{\circ} \cdot 3.0 \text{ m} = m \cdot 9.8 \text{ N/kg} \cdot \sin 65^{\circ} \cdot 2.0$

$$\therefore m = \frac{150 \text{ N} \cdot \sin 40^{\circ} \cdot 3.0 \text{ m}}{9.8 \text{ N/kg} \cdot \sin 65^{\circ} \cdot 2.0 \text{ m}} \quad \leftarrow 1 \text{ mark}$$

$$= 16 \text{ kg} \leftarrow 1 \text{ mark}$$

3. (6 marks)

A proton at rest 1.0 m from a fixed $5.0 \,\mu\text{C}$ charge is released as illustrated.

Calculate the speed of the proton when it is 3.0 m from the fixed charge.

$$E_{p_1} = E_{p_2} + E_{k_2} \qquad \qquad \leftarrow 1 \text{ mark}$$

$$kaQ = kaQ = 1 \qquad \Rightarrow$$

$$\frac{kqQ}{r_1} = \frac{kqQ}{r_2} + \frac{1}{2}mv^2 \qquad \leftarrow 1 \text{ mark}$$

$$\frac{9.00 \times 10^{9} (1.6 \times 10^{-19}) (5.0 \times 10^{-6})}{1.0} = \frac{9.00 \times 10^{9} (1.6 \times 10^{-19}) (5.0 \times 10^{-6})}{3.0} + 0.5 (1.67 \times 10^{-27}) v^{2} \quad \leftarrow 1 \text{ mark}$$

$$7.2 \times 10^{-15} = 2.4 \times 10^{-15} + 8.35 \times 10^{-28} v^{2}$$

$$v = 2.4 \times 10^{6} \text{ m/s} \qquad \leftarrow 1 \text{ mark}$$

A deuteron (charge + e, mass $2m_p$) is placed at the same starting position as the proton. Explain why the speed of the deuteron at the 3.0 m mark is different than that of the proton.

The deuteron will have the same kinetic energy as the proton. (1 mark) Because it has a larger mass than the proton, it has a smaller speed. (1 mark)

4. **(5 marks)**

A proton travelling at a high velocity enters a 0.45 T magnetic field and travels in a circular path of radius 0.28 m as shown.

 $F_c = F_B$

$$\frac{mv^2}{R} = qvB \qquad \leftarrow 1 \text{ mark}$$

$$\frac{mv}{R} = qB$$

$$\frac{1.67 \times 10^{-27}v}{0.28} = (1.6 \times 10^{-19})(0.45) \qquad \leftarrow 1 \text{ mark}$$

$$v = 1.2 \times 10^{-7} \text{ m/s} \qquad \leftarrow 1 \text{ mark}$$

$$E_k = \frac{1}{2}mv^2 \qquad \leftarrow \frac{1}{2} \text{ mark}$$

$$= \frac{1}{2} \times 1.67 \times 10^{-27} \times (1.2 \times 10^7)^2 \qquad \leftarrow \frac{1}{2} \text{ mark}$$

$$= 1.2 \times 10^{-13} \text{ J} \qquad \leftarrow 1 \text{ mark}$$

5. (5 marks)

A force (F) was used to pull a wooden block across a floor as shown below.

The size of the force was varied and the data table below shows the size of the force and the block's resulting acceleration.

<i>F</i> (N)	$a(m/s^2)$
20	0.25
25	0.85
30	1.35
35	1.95

Plot the data on the graph below and draw a line of best fit. Extend the line back to the 'y' axis so that you have a *y*-intercept point and determine the slope of the line.

$$slope = \frac{10 \text{ N}}{1.1 \text{ m/s}^2}$$

= 9.1 kg \leftarrow 2 marks

Using your slope value and your *y*-intercept value from the graph, determine the coefficient of friction between the block and the floor.

 $F - F_{fr} = ma$ $F = ma + F_{fr}$ $y - intercept = F_{fr} = 17.5 \text{ N}$

$$slope = mass = 9.1 \text{ kg}$$

 $17.5 = \mu mg$ $17.5 = \mu (9.1)9.8 \quad \leftarrow 1 \text{ mark}$ $\mu = 0.20 \quad \leftarrow 1 \text{ mark}$

6. (4 marks)

A student initially sets up a circuit containing two resistors and a light bulb, as shown.

The student notes the brightness of the light bulb. Using principles of physics, explain what happens to the brightness of the light bulb when resistor R_2 is removed.

Removing R_2 increases the resistance of the circuit (1 mark). The current through the circuit is therefore decreased (1 mark). There is therefore a reduced voltage drop across R_1 (1 mark). Therefore the voltage drop across the bulb is increased and therefore brighter $(P = V^2/R)$

(1 mark).

END OF KEY