Physics 12
August 2006 - Form A
Provincial Examination - Answer Key

```
Cognitive Processes
    K = Knowledge
    U = Understanding
    H = Higher Mental Processes
```

\quad	Question Types
35	$=$ Multiple Choice (MC)
$\mathbf{6}$	$=$ Written Response (WR)

Question Types
35 = Multiple Choice (MC)
$6=$ Written Response (WR)

Topics	Prescribed Learning Outcomes (PLOs)	
1. Vector Kinematics in Two Dimensions	A, B	Weightings
and Dynamics and Vector Dynamics	C, D	9%
2. Work, Energy and Power	E	9%
and Momentum	F, G	6%
3. Equilibrium	H	6%
4. Circular Motion	I	12%
and Gravitation	J	8%
5. Electrostatics	K, L	8%
6. Electric Circuits	M, N	12%
7. Electromagnetism	O, P	12%

Question Number	Keyed Response	Cognitive Process	Mark	Topic	PLO	Question Type
1.	B	K	2	1	A 2	MC
2.	C	U	2	1	B 2	MC
3.	A	U	2	1	B 8	MC
4.	B	K	2	1	C 1	MC
5.	B	U	2	1	D 5	MC
6.	B	U	2	1	D 6	MC
7.	C	U	2	2	E 7	MC
8.	B	U	2	2	E 8	MC
9.	B	U	2	2	F 4	MC
10.	D	U	2	2	F 4	MC
11.	C	U	2	2	G 3	MC
12.	D	K	2	3	$\mathrm{H} 4,8$	MC
13.	D	U	2	3	H 3	MC
14.	C	U	2	3	H 5	MC
15.	A	U	2	3	H 5	MC

Question Number	Keyed Response	Cognitive Process	Mark	Topic	PLO	Question Type
16.	A	K	2	4	I3	MC
17.	C	U	2	4	I4	MC
18.	B	U	2	4	I5	MC
19.	C	U	2	4	J9	MC
20.	A	H	2	4	J10	MC
21.	C	K	2	4	J4	MC
22.	C	U	2	5	K2	MC
23.	B	U	2	5	L5	MC
24.	B	U	2	5	L6	MC
25.	B	U	2	5	L7	MC
26.	C	U	2	6	M6	MC
27.	D	U	2	6	M5, 7	MC
28.	B	U	2	6	M11, 5	MC
29.	C	U	2	6	M9, 2	MC
30.	A	K	2	7	O1	MC
31.	D	U	2	7	O6	MC
32.	C	U	2	7	O5, D3	MC
33.	C	U	2	7	P3	MC
34.	C	U	2	7	P6, 5	MC
35.	A	U	2	7	P11	MC

Physics 12
August 2006

Provincial Examination -Written-Response Key / Scoring Guide

Cognitive Processes	Question Types
$\mathbf{K}=$ Knowledge	$\mathbf{3 5}=$ Multiple Choice (MC)
$\mathbf{U}=$ Understanding	$\mathbf{6}=$ Written Response (WR)
$\mathbf{H}=$ Higher Mental Processes	

Topics	Prescribed Learning Outcomes (PLOs)	
1. Vector Kinematics in Two Dimensions	A, B	Weightings
and Dynamics and Vector Dynamics	C, D	9%
2. Work, Energy and Power	E	9%
and Momentum	F, G	6%
3. Equilibrium	H	6%
4. Circular Motion	I	12%
and Gravitation	J	8%
5. Electrostatics	K, L	8%
6. Electric Circuits	M, N	12%
7. Electromagnetism	O, P	12%

Question Number	Keyed Response	Cognitive Process	Mark	Topic	PLO	Question Type
1.	-	H	5	1	B 8	WR
2.	-	U	5	3	H 11	WR
3.	-	H	6	5	L 4	WR
4.	-	U	5	7	$\mathrm{O} 6 ; \mathrm{E} 7$	WR
5.	-	H	5	1	C 8	WR
6.	-	H	4	6	$\mathrm{M} 7,4$	WR

1. (5 marks)

A projectile is launched from a cliff top at $20 \mathrm{~m} / \mathrm{s}, 35^{\circ}$ above the horizontal as shown below. The projectile hits the ground 3.7 s after it is launched.

Determine the height of the cliff $\left(d_{y}\right)$ and the range $\left(d_{x}\right)$ of the projectile.

$$
\begin{aligned}
& d_{y}=\left(20 \sin 35^{\circ}\right) 3.7+\frac{1}{2}(-9.8) 3.7^{2} \leftarrow \mathbf{2} \text { marks } \\
& d_{y}=-25 \mathrm{~m}
\end{aligned}
$$

height of cliff $=25 \mathrm{~m}$
$\leftarrow \mathbf{1}$ mark

Note to markers: Accept positive or negative answer.

$$
\begin{array}{ll}
d_{x}=\left(20 \cos 35^{\circ}\right) 3.7 & \leftarrow \mathbf{1} \text { mark } \\
d_{x}=61 \mathrm{~m} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

2. (5 marks)

A 4.0 m long steel beam is supported 3.0 m from a hinge by a cable attached as shown.

If the tension in the cable is 150 N what is the mass of the steel beam?

$$
\Sigma \tau_{A}=0
$$

$\therefore 150 \sin 40^{\circ} \cdot 3.0=F_{g} \cdot \sin 65^{\circ} \cdot 2.0$
$\leftarrow \mathbf{3}$ marks
$\therefore 150 \mathrm{~N} \cdot \sin 40^{\circ} \cdot 3.0 \mathrm{~m}=m \cdot 9.8 \mathrm{~N} / \mathrm{kg} \cdot \sin 65^{\circ} \cdot 2.0$

$$
\begin{aligned}
\therefore m & =\frac{150 \mathrm{~N} \cdot \sin 40^{\circ} \cdot 3.0 \mathrm{~m}}{9.8 \mathrm{~N} / \mathrm{kg} \cdot \sin 65^{\circ} \cdot 2.0 \mathrm{~m}} & \leftarrow \mathbf{1} \text { mark } \\
& =16 \mathrm{~kg} & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

3. (6 marks)

A proton at rest 1.0 m from a fixed $5.0 \mu \mathrm{C}$ charge is released as illustrated.

Calculate the speed of the proton when it is 3.0 m from the fixed charge.

$$
\begin{array}{rlrl}
E_{p_{1}} & =E_{p_{2}}+E_{k_{2}} & & \leftarrow \mathbf{1} \text { mark } \\
\frac{k q Q}{r_{1}} & =\frac{k q Q}{r_{2}}+\frac{1}{2} m v^{2} & & \leftarrow \mathbf{1} \text { mark } \\
\frac{9.00 \times 10^{9}\left(1.6 \times 10^{-19}\right)\left(5.0 \times 10^{-6}\right)}{1.0} & =\frac{9.00 \times 10^{9}\left(1.6 \times 10^{-19}\right)\left(5.0 \times 10^{-6}\right)}{3.0}+0.5\left(1.67 \times 10^{-27}\right) v^{2} & \leftarrow \mathbf{1} \text { mark } \\
7.2 \times 10^{-15} & =2.4 \times 10^{-15}+8.35 \times 10^{-28} v^{2} & & \\
v & =2.4 \times 10^{6} \mathrm{~m} / \mathrm{s} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

A deuteron (charge $+e$, mass $2 m_{p}$) is placed at the same starting position as the proton.
Explain why the speed of the deuteron at the 3.0 m mark is different than that of the proton.

The deuteron will have the same kinetic energy as the proton. (1 mark)
Because it has a larger mass than the proton, it has a smaller speed. (1 mark)

4. (5 marks)

A proton travelling at a high velocity enters a 0.45 T magnetic field and travels in a circular path of radius 0.28 m as shown.

What is the kinetic energy of the proton?

$$
\begin{array}{rlrl}
F_{c} & =F_{B} & & \\
\frac{m v^{2}}{R} & =q v B & & \leftarrow \mathbf{1} \text { mark } \\
\frac{m v}{R} & =q B & & \\
\frac{1.67 \times 10^{-27} v}{0.28} & =\left(1.6 \times 10^{-19}\right)(0.45) & & \leftarrow \mathbf{1} \text { mark } \\
v & =1.2 \times 10^{-7} \mathrm{~m} / \mathrm{s} & & \leftarrow \frac{1}{2} \text { mark } \\
E_{k} & =\frac{1}{2} m v^{2} & & \\
& =\frac{1}{2} \times 1.67 \times 10^{-27} \times\left(1.2 \times 10^{7}\right)^{2} & \leftarrow \frac{1}{2} \text { mark } \\
& =1.2 \times 10^{-13} \mathrm{~J} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

5. (5 marks)

A force (F) was used to pull a wooden block across a floor as shown below.

The size of the force was varied and the data table below shows the size of the force and the block's resulting acceleration.

$F(\mathrm{~N})$	$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
20	0.25
25	0.85
30	1.35
35	1.95

Plot the data on the graph below and draw a line of best fit. Extend the line back to the ' y ' axis so that you have a y-intercept point and determine the slope of the line.

(1 mark)

$$
\begin{aligned}
\text { slope } & =\frac{10 \mathrm{~N}}{1.1 \mathrm{~m} / \mathrm{s}^{2}} \\
& =9.1 \mathrm{~kg} \quad \leftarrow \mathbf{2} \mathbf{~ m a r k s}
\end{aligned}
$$

Using your slope value and your y-intercept value from the graph, determine the coefficient of friction between the block and the floor.

$$
\begin{aligned}
F-F_{f r} & =m a \\
F & =m a+F_{f r} \\
y \text {-intercept } & =F_{f r}=17.5 \mathrm{~N} \\
\text { slope } & =\text { mass }=9.1 \mathrm{~kg} \\
17.5 & =\mu m g \\
17.5 & =\mu(9.1) 9.8 \quad \leftarrow \mathbf{1} \text { mark } \\
\mu & =0.20 \quad \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

6. (4 marks)

A student initially sets up a circuit containing two resistors and a light bulb, as shown.

The student notes the brightness of the light bulb. Using principles of physics, explain what happens to the brightness of the light bulb when resistor R_{2} is removed.

Removing R_{2} increases the resistance of the circuit (1 mark).
The current through the circuit is therefore decreased (1 mark).
There is therefore a reduced voltage drop across R_{1} (1 mark).
Therefore the voltage drop across the bulb is increased and therefore brighter $\left(P=V^{2} / R\right)$ (1 mark).

