Physics 12

August 2003 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Vector Kinematics in Two Dimensions and Dynamics and Vector Dynamics
2. Work, Energy and Power and Momentum
3. Equilibrium
4. Circular Motion and
Gravitation
5. Electrostatics
6. Electric Circuits
7. Electromagnetism

Sub-Organizers

A, B
C, D
E
F, G
H
I

J
K, L
M, N
O, P

PART A: Multiple Choice (each question worth TWO marks)

Q	K	C	S	CO	PLO	Q	K	C	S	CO	PLO
1.	A	K	2	1	A8	16.	A	K	2	4	J1; C2
2.	A	U	2	1	A7	17.	B	U	2	4	J2
3.	B	U	2	1	B8	18.	C	H	2	4	J9, 8
4.	D	K	2	1	C8	19.	C	K	2	5	L1; A10
5.	A	U	2	2	E7; C3	20.	C	U	2	5	L6
6.	D	K	2	2	F2	21.	D	U	2	5	L7
7.	B	U	2	2	F4	22.	A	U	2	6	M7; N2
8.	B	U	2	2	F7	23.	D	U	2	6	M11
9.	B	U	2	2	G3	24.	B	K	2	7	O3
10.	B	K	2	3	H1	25.	D	U	2	7	O4
11.	C	U	2	3	H8	26.	B	U	2	7	O6
12.	B	H	2	3	H11	27.	D	U	2	7	P11, 13
13.	D	K	2	4	I1	28.	B	U	2	7	O5
14.	B	U	2	4	I4	29.	C	U	2	7	O3; P6
15.	C	U	2	4	I4	30.	A	H	2	7	O6

Multiple Choice $=\mathbf{6 0}$ marks

PART B: Written Response

Q	\mathbf{B}	\mathbf{C}	\mathbf{S}	$\mathbf{C O}$	PLO
1.	1	U	7	1	$\mathrm{C} 8 ; \mathrm{D} 3,6$
2.	2	U	7	2	E 10
3.	3	U	7	3	H 3
4.	4	U	7	4,2	$\mathrm{~J} 8 ; \mathrm{I} 4$
5.	5	U	7	5	L 4
6.	6	H	9	6	$\mathrm{M} 11,7$
7.	7	U	7	7,6	$\mathrm{P} ; \mathrm{M} 5$
8	8	H	5	1,7	$\mathrm{~A} 10 ; \mathrm{P} 1$
9.	9	H	4	1	$\mathrm{C} 8 ; \mathrm{D} 1$
	Written Response $=\mathbf{6 0}$ marks				

$$
\begin{aligned}
\text { Multiple Choice } & =60(30 \text { questions }) \\
\text { Written Response } & =60(9 \text { questions }) \\
\text { Examination Total } & =\mathbf{1 2 0} \text { marks }
\end{aligned}
$$

[^0]1. Determine the acceleration of the system of masses shown below when it is released. (7 marks)

$$
\begin{aligned}
F_{\text {net }} & =10(9.8)-6.0(9.8) \sin 36^{\circ}-0.22(6.0) 9.8 \cos 36^{\circ} & & \leftarrow \mathbf{3} \mathbf{~ m a r k s} \\
F_{n e t} & =53.0 \mathrm{~N} & & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
53.0 & =(10+6.0) a & & \leftarrow \mathbf{2} \mathbf{~ m a r k s} \\
a & =3.3 \mathrm{~m} / \mathrm{s}^{2} & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{aligned}
$$

2. A $3.7 \times 10^{3} \mathrm{~W}$ motor is 81% efficient. This motor is pulling a 450 kg block along a horizontal surface. If the coefficient of friction is 0.35 , what is the speed of the block? (7 marks)

$$
\begin{array}{rlrl}
P & =\frac{W}{t}=\frac{F \cdot d}{t} & & \\
P & =F \cdot v & & \leftarrow \mathbf{2} \text { marks } \\
0.81 P & =F_{f} \cdot v & & \leftarrow \mathbf{1} \text { mark } \\
0.81\left(3.7 \times 10^{3}\right) & =\mu F_{N} v & & \leftarrow \mathbf{1} \text { mark } \\
0.81\left(3.7 \times 10^{3}\right) & =0.35(450) 9.8 \cdot v & \leftarrow \mathbf{2} \text { marks } \\
v & =1.9 \mathrm{~m} / \mathrm{s} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

3. A 15 kg store sign is hung using two ropes as shown below. Determine the tension in each rope.

$$
\begin{aligned}
\frac{T_{1}}{\sin 20^{\circ}} & =\frac{147}{\sin 85^{\circ}} \quad \leftarrow \mathbf{1} \text { mark } \\
T_{1} & =50.5 \mathrm{~N} \\
& =50 \mathrm{~N} \quad \leftarrow \mathbf{1} \text { mark } \\
\frac{T_{2}}{\sin 75^{\circ}} & =\frac{147}{\sin 85^{\circ}} \leftarrow \mathbf{1} \text { mark } \\
T_{2} & =143 \mathrm{~N} \\
& =140 \mathrm{~N} \quad \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

4. A 1500 kg satellite orbits the moon at an altitude of $2.3 \times 10^{6} \mathrm{~m}$.

What is the period for the satellite?

$$
\begin{aligned}
F_{c} & =F_{g} & & \leftarrow \mathbf{2} \text { marks } \\
\frac{m 4 \pi^{2} r}{T^{2}} & =\frac{G m_{m} m}{r^{2}} & & \leftarrow \mathbf{1} \text { mark } \\
T & =\sqrt{\frac{4 \pi^{2} r^{3}}{G m_{m}}} & & \leftarrow \mathbf{1} \text { mark } \\
& =\sqrt{\frac{4 \pi^{2} \times\left(4.0 \times 10^{6}\right)^{3}}{6.67 \times 10^{-11} \times 7.35 \times 10^{22}}} & & \leftarrow \mathbf{2} \text { marks } \\
& =23000 \mathrm{~s} & & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

5. Two protons are initially held at rest $2.5 \times 10^{-10} \mathrm{~m}$ apart.

If one of the protons is released as shown below, what is its speed when it is $8.0 \times 10^{-10} \mathrm{~m}$ from the fixed proton?
(7 marks)

fixed proton

$$
\begin{aligned}
E_{p_{1}} & =E_{p_{2}}+E_{k} \\
E_{p_{1}} & =\frac{k Q_{1} Q_{2}}{R_{1}} \\
& =\frac{9.0 \times 10^{9}\left(1.6 \times 10^{-19}\right)^{2}}{2.5 \times 10^{-10}} \\
E_{p_{1}} & =9.2 \times 10^{-19} \mathrm{~J} \\
E_{p_{2}} & =\frac{k Q_{1} Q_{2}}{R_{2}} \\
& =\frac{9.0 \times 10^{9}\left(1.6 \times 10^{-19}\right)^{2}}{8.0 \times 10^{-10}}
\end{aligned}
$$

$$
E_{p_{2}}=2.9 \times 10^{-19} \mathrm{~s} \quad \leftarrow \mathbf{2} \text { marks }
$$

$$
E_{p_{1}}=E_{p_{2}}+E_{k}
$$

$9.2 \times 10^{-19}=2.9 \times 10^{-19}+\frac{1}{2} m v^{2}$
$6.3 \times 10^{-19}=\frac{1}{2}\left(1.67 \times 10^{-27}\right) v^{2} \quad \leftarrow \mathbf{2}$ marks $v=2.7 \times 10^{4} \mathrm{~m} / \mathrm{s} \quad \leftarrow \mathbf{1}$ mark
6. a) For the circuit below, what is the terminal voltage of the battery?

$$
\begin{aligned}
R_{\text {parallel }} & =5.0 \Omega \\
R_{\text {total }} & =9.0 \Omega \\
I_{\text {total }} & =\frac{V}{R}=\frac{12.0}{9.0}=1.33 \mathrm{~A} \\
\text { Ir drop } & =1.33(4.0)=5.3 \mathrm{~V} \\
V_{\text {terminal }} & =12.0-5.3=6.7 \mathrm{~V} \quad \leftarrow \mathbf{4} \text { marks }
\end{aligned}
$$

b) If resistor R is added in parallel to the circuit as shown, what is the effect on the terminal voltage?

c) Using principles of physics, explain your choice for b).

Additional R in parallel results in an overall lower R, thus an increase in current. (2 marks) As a consequence, a greater voltage drop Ir occurs across the internal resistance resulting in a smaller terminal voltage. (2 marks)
7. A 0.120 m diameter coil consisting of 200 loops is placed in a 0.35 T magnetic field. The magnetic field is changed to 0.25 T in the opposite direction in 0.80 s .

Initial

Final

What is the magnitude of the current through the 33Ω resistor connected to the coil? (Ignore the resistance of the coil.)

$$
\begin{aligned}
\mathcal{E} & =\frac{-N \Delta \Phi}{\Delta t} & & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{200 \cdot(0.25-(-0.35))\left(\pi \cdot 0.060^{2}\right)}{0.80} & & \leftarrow \mathbf{2} \mathbf{~ m a r k s} \\
& =\frac{200 \cdot 0.60 \cdot 0.0113}{0.80} & & \leftarrow \mathbf{1} \text { mark } \\
& =1.7 \mathrm{~V} & & \leftarrow \mathbf{1} \text { mark } \\
\therefore \mathrm{I} & =\frac{\varepsilon}{R} & & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{1.7}{33} & & \\
& =0.051 \mathrm{~A} & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{aligned}
$$

8. A conducting loop is pulled at various speeds through a region of constant magnetic field strength.

A student measures the potential difference across the resistor in the loop for each trial and records the following data.

POTENTIAL DIFFERENCE (V)	SPEED $(\mathrm{m} / \mathrm{s})$
0.10	1.5
0.17	2.5
0.20	3.0
0.24	4.0
0.34	5.5
0.41	6.0

a) Plot a graph of the potential difference vs. speed.

b) Calculate the slope of your graph. (Include units.)

$$
\text { slope } \approx 0.065 \frac{\mathrm{~V}}{\mathrm{~m} / \mathrm{s}} \cong 0.065 \mathrm{Vs} / \mathrm{m}
$$

c) What is the strength of the magnetic field?

$$
\begin{aligned}
\varepsilon & =B \ell v \\
\therefore \text { slope } & =B \ell \\
\therefore B & =\frac{\text { slope }}{\ell} \\
& =\frac{0.065}{0.15} \\
& \cong 0.43 \mathrm{~T}
\end{aligned}
$$

9. A crate is being accelerated across a rough concrete floor by a rope as shown in position 1 below. It is noticed that when the rope is lifted to a small angle θ as shown in position 2 the acceleration of the crate increases (F remains the same).

Using principles of physics, explain why this is the case.

The pulling force in position 2 has a vertical component (1 mark) which balances a portion of F_{g} (1 mark), leaving F_{N} and therefore $F_{f r}$ reduced (1 mark). The horizontal component of F is changed very little from 1 to 2 (1 mark).

[^0]: LEGEND:
 Q = Question Number
 $\mathbf{C O}=$ Curriculum Organizer
 B = Score Box Number
 C = Cognitive Level
 $\mathbf{K}=$ Keyed Response $\quad \mathbf{S}=$ Score
 PLO = Prescribed Learning Outcome

