Physics 12 August 2003 Provincial Examination

Answer Key / Scoring Guide

	Organizers	Sub-Organizers
1.	Vector Kinematics in Two Dimensions and	Α, Β
	Dynamics and Vector Dynamics	C, D
2.	Work, Energy and Power <i>and</i>	E
	Momentum	F, G
3.	Equilibrium	Н
4.	Circular Motion and	Ι
	Gravitation	J
5.	Electrostatics	K, L
6.	Electric Circuits	M, N
7.	Electromagnetism	O, P

CURRICULUM:

PART A: Multiple Choice (each question worth TWO marks)

Q	K	С	S	СО	PLO	Q	K	С	S	CO	PLO
1.	А	K	2	1	A8	16.	А	K	2	4	J1; C2
2.	А	U	2	1	A7	17.	В	U	2	4	J2
3.	В	U	2	1	B 8	18.	С	Н	2	4	J9, 8
4.	D	Κ	2	1	C8	19.	С	Κ	2	5	L1; A10
5.	А	U	2	2	E7; C3	20.	С	U	2	5	L6
6.	D	Κ	2	2	F2	21.	D	U	2	5	L7
7.	В	U	2	2	F4	22.	А	U	2	6	M7; N2
8.	В	U	2	2	F7	23.	D	U	2	6	M11
9.	В	U	2	2	G3	24.	В	Κ	2	7	O3
10.	В	Κ	2	3	H1	25.	D	U	2	7	O4
11.	С	U	2	3	H8	26.	В	U	2	7	O6
12.	В	Н	2	3	H11	27.	D	U	2	7	P11, 13
13.	D	Κ	2	4	I1	28.	В	U	2	7	05
14.	В	U	2	4	I4	29.	С	U	2	7	O3; P6
15.	С	U	2	4	I4	30.	А	Н	2	7	O6

Multiple Choice = 60 marks

PART B: Written Response

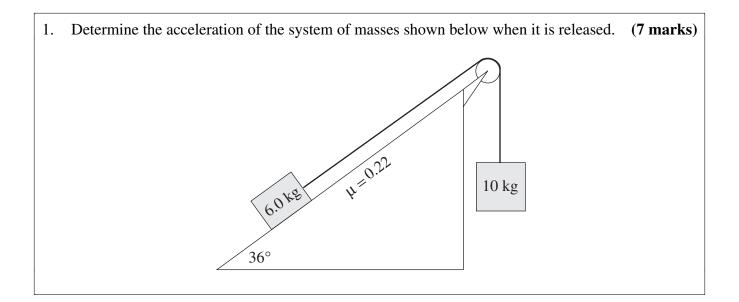
Q	В	С	S	CO	PLO
1.	1	U	7	1	C8; D3, 6
2.	2	U	7	2	E10
3.	3	U	7	3	H3
4.	4	U	7	4, 2	J8; I4
5.	5	U	7	5	L4
6.	6	Н	9	6	M11, 7
7.	7	U	7	7,6	P5; M5
8	8	Н	5	1, 7	A10; P1
9.	9	Н	4	1	C8; D1

Written Response = 60 marks

EXAMINATION TOTAL	=	120 marks
Written Response	=	60 (9 questions)
Multiple Choice	=	60 (30 questions)

LEGEND:

Q = Question Number

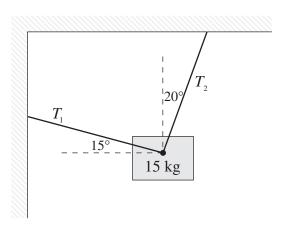

CO = Curriculum Organizer

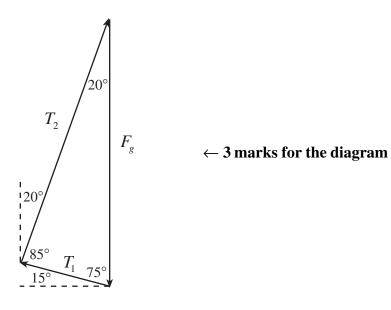
PLO = Prescribed Learning Outcome

B = Score Box Number

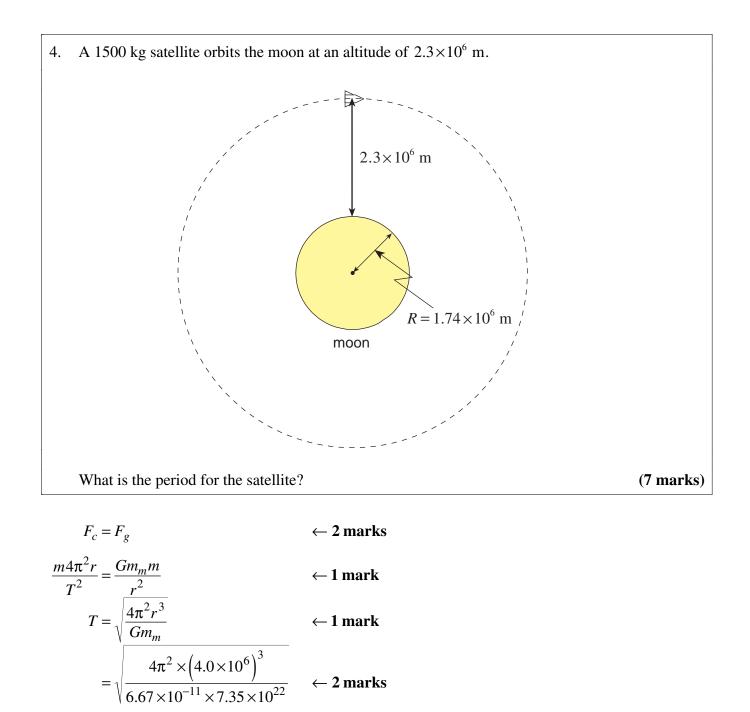
K = Keyed Response

C = Cognitive Level S = Score

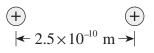


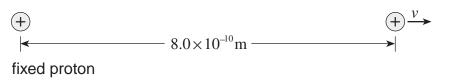

$F_{net} = 10(9.8) - 6.0(9.8) \sin 36^\circ - 0.22(6.0) 9.8 \cos 36^\circ$	← 3 marks
$F_{net} = 53.0 \text{ N}$	\leftarrow 1 mark
53.0 = (10 + 6.0)a	\leftarrow 2 marks
$a = 3.3 \text{ m/s}^2$	\leftarrow 1 mark

2. A 3.7×10^3 W motor is 81% efficient. This motor is pulling a 450 kg block along a horizontal surface. If the coefficient of friction is 0.35, what is the speed of the block? (7 marks)

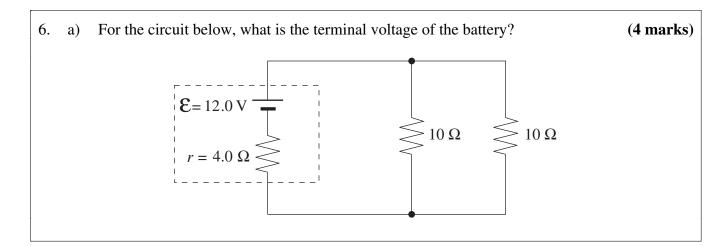

$P = \frac{W}{t} = \frac{F \cdot d}{t}$	
$P = F \cdot v$	$\leftarrow 2 \text{ marks}$
$0.81P = F_f \cdot v$	$\leftarrow 1 \text{ mark}$
$0.81(3.7 \times 10^3) = \mu F_N v$	$\leftarrow 1 \text{ mark}$
$0.81 (3.7 \times 10^3) = 0.35 (450) 9.8 \cdot v$	$\leftarrow 2 \text{ marks}$
v = 1.9 m/s	$\leftarrow 1 \text{ mark}$

3. A 15 kg store sign is hung using two ropes as shown below. Determine the tension in each rope. (7 marks)


$$\frac{T_1}{\sin 20^\circ} = \frac{147}{\sin 85^\circ} \leftarrow 1 \text{ mark}$$
$$T_1 = 50.5 \text{ N}$$
$$= 50 \text{ N} \leftarrow 1 \text{ mark}$$
$$\frac{T_2}{\sin 75^\circ} = \frac{147}{\sin 85^\circ} \leftarrow 1 \text{ mark}$$
$$T_2 = 143 \text{ N}$$
$$= 140 \text{ N} \leftarrow 1 \text{ mark}$$

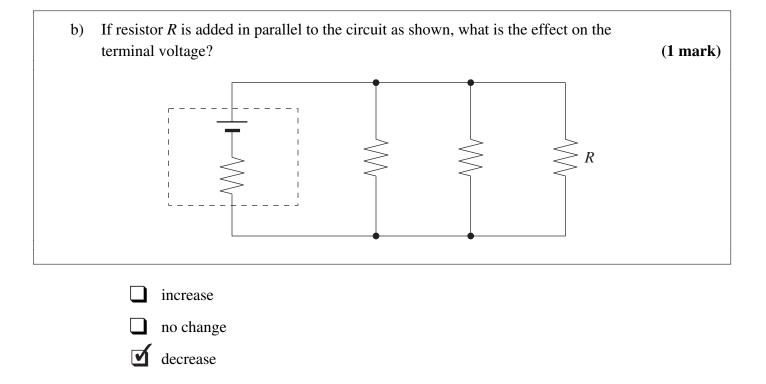

 $= 23\,000\,\mathrm{s}$

 $\leftarrow 1 \text{ mark}$

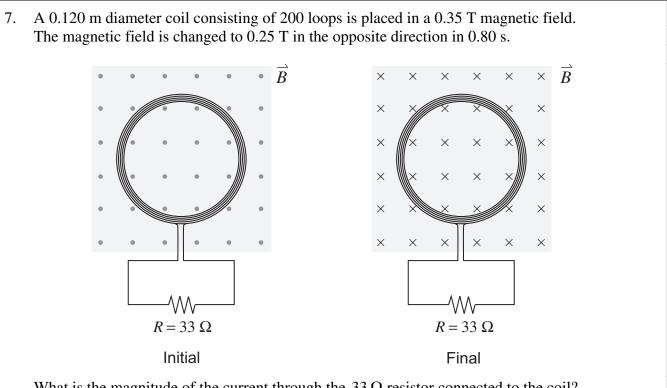

5. Two protons are initially held at rest 2.5×10^{-10} m apart.

If one of the protons is released as shown below, what is its speed when it is 8.0×10^{-10} m from the fixed proton? (7 marks)

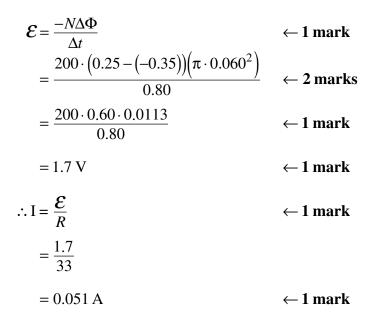
$$\begin{split} E_{p_1} &= E_{p_2} + E_k \\ E_{p_1} &= \frac{kQ_1Q_2}{R_1} \\ &= \frac{9.0 \times 10^9 \left(1.6 \times 10^{-19}\right)^2}{2.5 \times 10^{-10}} \\ E_{p_1} &= 9.2 \times 10^{-19} \text{ J} & \leftarrow 2 \text{ marks} \\ E_{p_2} &= \frac{kQ_1Q_2}{R_2} \\ &= \frac{9.0 \times 10^9 \left(1.6 \times 10^{-19}\right)^2}{8.0 \times 10^{-10}} \\ E_{p_2} &= 2.9 \times 10^{-19} \text{ s} & \leftarrow 2 \text{ marks} \\ E_{p_1} &= E_{p_2} + E_k \\ 9.2 \times 10^{-19} &= 2.9 \times 10^{-19} + \frac{1}{2}mv^2 \\ 6.3 \times 10^{-19} &= \frac{1}{2} \left(1.67 \times 10^{-27}\right)v^2 & \leftarrow 2 \text{ marks} \\ v &= 2.7 \times 10^4 \text{ m/s} & \leftarrow 1 \text{ mark} \end{split}$$

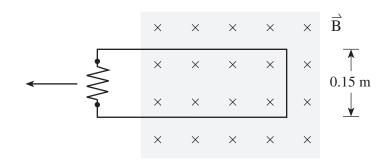

 $R_{parallel} = 5.0 \, \Omega$

 $R_{total} = 9.0 \,\Omega$

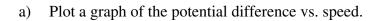

$$I_{total} = \frac{V}{R} = \frac{12.0}{9.0} = 1.33 \text{ A}$$

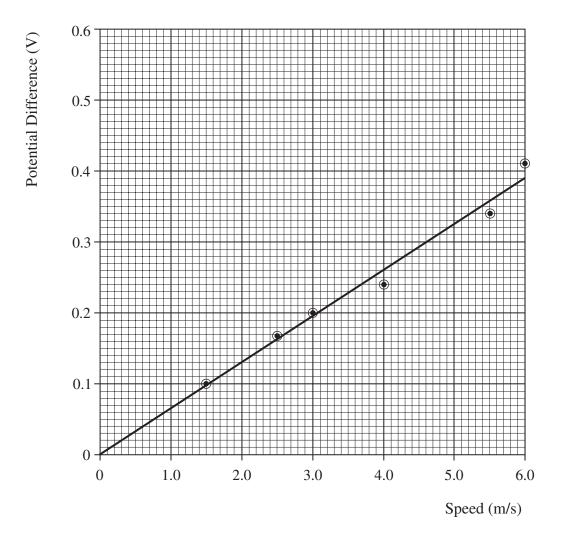
Ir drop = 1.33(4.0) = 5.3 V

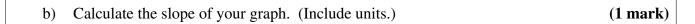

 $V_{terminal} = 12.0 - 5.3 = 6.7 \text{ V} \leftarrow 4 \text{ marks}$


Additional *R* in parallel results in an overall lower *R*, thus an increase in current. (2 marks) As a consequence, a greater voltage drop *Ir* occurs across the internal resistance resulting in a smaller terminal voltage. (2 marks)

What is the magnitude of the current through the 33Ω resistor connected to the coil? (Ignore the resistance of the coil.) (7 marks)




8. A conducting loop is pulled at various speeds through a region of constant magnetic field strength.



A student measures the potential difference across the resistor in the loop for each trial and records the following data.

POTENTIAL DIFFERENCE (V)	SPEED (m/s)
0.10	1.5
0.17	2.5
0.20	3.0
0.24	4.0
0.34	5.5
0.41	6.0

$$slope \approx 0.065 \ \frac{V}{m/s} \cong 0.065 \ Vs/m$$

 $\varepsilon = B\ell v$

 \therefore slope = $B\ell$

$$\therefore B = \frac{slope}{\ell}$$
$$= \frac{0.065}{0.15}$$
$$\cong 0.43 \text{ T}$$

0308phk

The pulling force in position 2 has a vertical component (1 mark) which balances a portion of F_g (1 mark), leaving F_N and therefore F_{fr} reduced (1 mark). The horizontal component of F is changed very little from 1 to 2 (1 mark).

END OF KEY