Physics 12 August 1999 Provincial Examination

Answer Key / Scoring Guide

	CURRICULUM.	
	Organizers	Sub-Organizers
1.	Vector Kinematics in Two Dimensions and	Α, Β
	Dynamics and Vector Dynamics	C, D
2.	Work, Energy and Power and	Ε
	Momentum	F, G
3.	Equilibrium	Н
4.	Circular Motion and	Ι
	Gravitation	J
5.	Electrostatics	K, L
6.	Electric Circuits	M, N
7.	Electromagnetism	O, P

CURRICULUM:

PART A: Multiple Choice (each question worth TWO marks)

Q	K	С	CO	PLO	Q	K	С	CO	PLO
1.	В	Κ	1	B5, 6	16.	D	K	4	J4
2.	С	U	1	B1, 2, E7	17.	А	U	4	J9, 8
3.	В	U	1	A7	18.	D	Κ	5	K6
4.	D	Κ	1	C1, A10	19.	В	U	5	L7
5.	А	U	1	C3, 7, D6	20.	В	Н	5	K8, A7
6.	В	Κ	2	E9, A1	21.	С	Κ	6	N4
7.	В	U	2	E10	22.	С	U	6	M7, 5
8.	В	U	2	F6, 7	23.	С	Н	6	M11
9.	В	Κ	3	H4	24.	А	Κ	7	O3
10.	С	U	3	H2, 3	25.	С	U	7	O5
11.	С	U	3	H8, 11	26.	D	U	7	O6
12.	D	Κ	4	D4, I5	27.	С	U	7	P3
13.	В	U	4	I4	28.	С	U	7	P4, 6
14.	В	U	4	I4, E7	29.	D	U	7	P11, 12, 13
15.	В	U	4	C4, I4, 5	30.	D	Н	7	M5, P5, 4, 6

Multiple Choice = 60 marks

PART B: Written Response

Q	В	С	S	CO	PLO
1.	1	U	7	1	C4, D4, 6
2.	2	U	7	2	F7, E7
3.	3	U	7	3	H11
4.	4	U	9	4	J9, E7
5.	5	U	7	5	L8, 6
6.	6	U	7	6	M7,5
7.	7	U	7	7	P9, M5
8	8	Н	5	1	A10, P9
9.	9	Н	4	2	E5, 2, 7

Written Response = 60 marks

EXAMINATION TOTAL	=	120 marks
Written Response	=	60 (9 questions)
Multiple Choice	=	60 (30 questions)

LEGEND:		
$\mathbf{Q} = $ Question Number	$\mathbf{B} = $ Score Box Number	\mathbf{C} = Cognitive Level
CO = Curriculum Organizer	$\mathbf{K} = \mathbf{Keyed} \ \mathbf{Response}$	$\mathbf{S} = \mathbf{Score}$
PLO = Prescribed Learning Outcome		

$$cart F_{//} = mg \sin \theta$$

$$= 18(9.8) \sin 35$$

$$= 101 \text{ N}$$

$$W_{object} = mg$$

$$= 12(9.8)$$

$$= 118 \text{ N}$$

$$c = \frac{F_{net}}{m}$$

$$= \frac{W_1 + F_{//}}{m_1 + m_2}$$

$$= \frac{118 + 101}{12 + 18}$$

$$a = 7.3 \text{ m/s}^2$$

$$\leftarrow 1 \text{ mark}$$

$$p_{i} = p_{f}$$

$$mv_{i} = (2 m)v_{f}$$

$$v_{f} = \frac{v_{i}}{2}$$

$$= 1.5 \text{ m/s}$$

$$\Delta E_{P} = -\Delta E_{k}$$

$$(2 m)gh_{\max} = \frac{1}{2}(2 m)(v_{f})^{2}$$

$$h_{\max} = \frac{(v_{f})^{2}}{2 g}$$

$$= 0.11 \text{ m}$$

$$\downarrow \leftarrow 3\frac{1}{2} \text{ marks}$$

Alternate Solution:

$$\Sigma \tau = 0 \text{ about the hinge}$$

$$(314)(3.0) - T_{y}(4.0) + 911(6.0) = 0$$

$$T_{y} = 1\ 600\ \text{N}$$

$$F_{h} = T_{x}$$

$$F_{h} = \frac{T_{y}}{\tan 48}$$

$$F_{h} = 1\ 400\ \text{N}(1.4 \times 10^{3}\ \text{N})$$

$$\leftarrow 2\ \text{marks}$$

998phk

September 8, 1999

- 4. A 1 500 kg satellite travels around the earth in a stable orbit with a radius of 1.3×10^7 m.
 - a) What is the speed of the satellite in this orbit?

(5 marks)

$$F_{net} = ma_c$$

$$\frac{Gm_Em}{r^2} = \frac{mv^2}{r} \qquad \qquad \leftarrow 3 \text{ marks}$$

$$v = \sqrt{\frac{Gm_E}{r}}$$

$$= \sqrt{\frac{6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \cdot 5.98 \times 10^{24} \text{ kg}}{1.3 \times 10^7 \text{ m}}}$$

$$= 5.5 \times 10^3 \text{ m s} \qquad \leftarrow 2 \text{ marks}$$

	the speed in the first orbit. (Check one response.)	(1 mark)
	more than	
	less than	
	the same as	
b)	The satellite is then moved to a new orbit with twice the radius of the first orbit. This orbit is	The speed

The satellite's speed in a stable orbit is inversely proportional to the square root of orbit radius: $v \propto \frac{1}{\sqrt{r}}$. Therefore, in an orbit with twice the radius of the first, the satellite speed will be lower.

$$V_{A} = \frac{E_{p}}{q} = \frac{kQ}{r_{A}} = \frac{9.0 \times 10^{9} \times (-15.0 \times 10^{-6})}{3.0}$$

= -45 000 V
$$V_{B} = -27 000 \text{ V}$$

$$\left. \right\} \leftarrow 3 \text{ marks}$$

 $\Delta V = 18\ 000\ V$ (±18\ 000\ V acceptable)

c) 0.036 J of work must be done to move a charge q from A to B. Find the magnitude and polarity of this charge. (3 marks)

$$\Delta V = \frac{W}{q} \rightarrow q = \frac{W}{\Delta V} = \frac{0.036}{+18\ 000}$$

= 2.0×10⁻⁶ C, positive
Answer: +2.0×10⁻⁶ C
$$\left\{ \begin{array}{l} \leftarrow 3 \text{ marks} \\ -3 \text{ marks} \end{array} \right\}$$

$$I_{3} = I - I_{1}$$

$$= 2.40 - 0.60$$

$$= 1.80 \text{ A}$$

$$V_{3} = I_{3}R_{3}$$

$$= 1.80(5.0)$$

$$= 9.0 \text{ V}$$

$$V_{1} = I_{1}R_{1}$$

$$= 0.60(6.0)$$

$$= 3.6 \text{ V}$$

$$V_{2} = 9.0 - 3.6$$

$$= 5.4 \text{ V}$$

$$R_{2} = \frac{V_{2}}{I_{1}} = \frac{5.4}{0.60} = 9.0 \Omega \quad \leftarrow 1 \text{ mark}$$

$$V = V_3 + V_4$$

= 9.0 + I₄R₄
= 9.0 + (2.40)(10.0)
= 9.0 + 24.0
= 33.0 V
$$\left. \leftarrow 2 \text{ marks} \right.$$

7. An automobile starter motor, connected to a 12.0 V battery, produces a back emf of 9.7 V when operating at normal speed. A malfunction prevents the starter motor from turning and the current increases to 180 A. What current does the starter motor draw when operating normally? (7 marks)

$$V_{b} = \mathbf{\mathcal{E}} - Ir$$

$$I = \frac{\mathbf{\mathcal{E}} - V_{b}}{r}$$

$$r = \frac{\mathbf{\mathcal{E}}}{I}$$

$$r = \frac{12.0 \text{ V}}{180 \text{ A}}$$

$$r = 0.067 \Omega$$

$$I = \frac{12.0 \text{ V} - 9.7 \text{ V}}{0.067 \Omega}$$

$$I = 34 \text{ A}$$

$$\leftarrow 3 \text{ marks}$$

An electric motor is connected to a 9.0 V power supply. The data table below shows how 8. the back emf of the motor, V_{back} , varies with the current through the armature, I, as the mechanical load changes.

Back emf V_{back} (V)	7.5	6.0	4.5	3.0	1.5	0
Current I (A)	1.0	2.0	3.0	4.0	5.0	6.0

Plot this data on the graph below. a)

(2 marks)

Determine the slope of this graph. b)

(2 marks)

$$slope = \frac{3.0 - 6.0 \text{ V}}{4.0 - 2.0 \text{ A}} \\ = -1.5 \frac{\text{V}}{\text{A}} \\ = -1.5 \Omega$$

What property of the motor does the slope of this graph represent? c)

(1 mark)

internal resistance or resistance $\leftarrow 1$ mark

9. A cyclist must do 1 000 J of work to speed up from 0 m/s to 5.0 m/s. The same cyclist must do 3 000 J of work to speed up from 5.0 m/s to 10.0 m/s. (In both instances friction has been ignored.) Using principles of physics, explain why more work must be done to speed up from 5.0 m/s to 10.0 m/s than from 0 m/s to 5.0 m/s. (Remember, friction plays no role in this problem.) (4 marks)

$$W = \Delta E$$

 $= \Delta E_k$ in this case $\leftarrow 1$ mark

 $E_k = \frac{1}{2}mv^2$ (1 mark), so velocity changing by a factor of two will cause kinetic energy to change by a factor of four (1 mark) and so the work done will become ever greater as the velocity increases by uniform amounts. (1 mark)

OR

 $W = F \cdot d$ (1 mark), but if the cyclist travels faster while exerting a constant force, for each uniform increment of velocity the distance travelled will become greater (1 mark) and greater. Hence $W = F \cdot d$ yields greater values for W as the distance becomes larger. (2 marks)

END OF KEY