Physics 12
August 1999 Provincial Examination
Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Vector Kinematics in Two Dimensions and Dynamics and Vector Dynamics
2. Work, Energy and Power
and
Momentum
3. Equilibrium
4. Circular Motion
and
Gravitation
5. Electrostatics
6. Electric Circuits
7. Electromagnetism

Sub-Organizers
A, B
C, D
E
F, G
H
I

J
K, L
M, N
O, P

PART A: Multiple Choice (each question worth TWO marks)

Q	K	C	CO	PLO	Q	K	C	CO	PLO
1.	B	K	1	B5, 6	16.	D	K	4	J4
2.	C	U	1	B1, 2, E7	17.	A	U	4	J9, 8
3.	B	U	1	A7	18.	D	K	5	K6
4.	D	K	1	C1, A10	19.	B	U	5	L7
5.	A	U	1	C3, 7, D6	20.	B	H	5	K8, A7
6.	B	K	2	E9, A1	21.	C	K	6	N4
7.	B	U	2	E10	22.	C	U	6	M7, 5
8.	B	U	2	F6, 7	23.	C	H	6	M11
9.	B	K	3	H4	24.	A	K	7	O3
10.	C	U	3	H2, 3	25.	C	U	7	O5
11.	C	U	3	H8, 11	26.	D	U	7	O6
12.	D	K	4	D4, I5	27.	C	U	7	P3
13.	B	U	4	I4	28.	C	U	7	P4, 6
14.	B	U	4	I4, E7	29.	D	U	7	P11, 12, 13
15.	B	U	4	C4, I4, 5	30.	D	H	7	M5, P5, 4, 6

Multiple Choice $\mathbf{=} \mathbf{6 0}$ marks

PART B: Written Response

Q	B	C	S	CO	PLO
1.	1	U	7	1	C4, D4, 6
2.	2	U	7	2	F7, E7
3.	3	U	7	3	H11
4.	4	U	9	4	J9, E7
5.	5	U	7	5	L8, 6
6.	6	U	7	6	M7,5
7.	7	U	7	7	P9, M5
8	8	H	5	1	A10, P9
9.	9	H	4	2	E5, 2, 7

Written Response = $\mathbf{6 0}$ marks

$$
\begin{aligned}
\text { Multiple Choice } & =60(30 \text { questions }) \\
\text { Written Response } & =60 \text { (9 questions) } \\
\text { Examination Total } & =\mathbf{1 2 0} \text { marks }
\end{aligned}
$$

LEGEND:

Q = Question Number
$\mathbf{C O}=$ Curriculum Organizer
PLO = Prescribed Learning Outcome

B = Score Box Number
$\mathbf{K}=$ Keyed Response

C = Cognitive Level
S = Score

1. An 18 kg cart is connected to a 12 kg hanging block as shown. (Ignore friction.)

a) Draw and label a free body diagram for the 18 kg cart.

b) What is the magnitude of the acceleration of the cart?

$$
\left.\begin{array}{rl}
\text { cart } \left.\begin{array}{rl}
F_{/ /} & =m g \sin \theta \\
& =18(9.8) \sin 35 \\
& =101 \mathrm{~N}
\end{array}\right\} \leftarrow \mathbf{1} \frac{\mathbf{1}}{\mathbf{2}} \mathbf{\text { marks }} \\
W_{\text {object }} & =m g \\
& =12(9.8) \\
& =118 \mathrm{~N}
\end{array}\right\} \leftarrow \mathbf{1} \mathbf{~ m a r k}
$$

2. A 0.25 kg cart travelling at $3.0 \mathrm{~m} / \mathrm{s}$ collides with and sticks to an identical stationary cart on a level track. (Ignore friction.)

To what height h do the combined carts travel up the hill?

$$
\left.\begin{array}{rl}
p_{i} & =p_{f} \\
m v_{i} & =(2 m) v_{f} \\
v_{f} & =\frac{v_{i}}{2} \\
& =1.5 \mathrm{~m} / \mathrm{s}
\end{array}\right\} \leftarrow \mathbf{3} \frac{1}{2} \text { marks }
$$

3. A 6.0 m uniform beam of mass 32 kg is suspended horizontally by a hinged end and a cable. A 93 kg object is connected to one end of the beam.

What is the magnitude of the horizontal force F_{h} that the hinge exerts on the beam?
(7 marks)

Alternate Solution:

$$
\left.\begin{array}{rl}
\Sigma \tau & =0 \text { about the hinge } \\
(314)(3.0)-T_{y}(4.0)+911(6.0) & =0 \\
T_{y} & =1600 \mathrm{~N} \\
F_{h} & =T_{x} \\
F_{h} & =\frac{T_{y}}{\tan 48} \\
F_{h} & =1400 \mathrm{~N}\left(1.4 \times 10^{3} \mathrm{~N}\right) \\
-6-
\end{array}\right\} \leftarrow \mathbf{5} \text { marks }
$$

4. A 1500 kg satellite travels around the earth in a stable orbit with a radius of $1.3 \times 10^{7} \mathrm{~m}$.
a) What is the speed of the satellite in this orbit?

$$
F_{\text {net }}=m a_{c}
$$

$$
\begin{array}{rlrl}
\frac{G m_{E} m}{r^{2}} & =\frac{m v^{2}}{r} & \leftarrow \mathbf{3} \text { marks } \\
v & =\sqrt{\frac{G m_{E}}{r}} & & \\
& =\sqrt{\frac{6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \cdot 5.98 \times 10^{24} \mathrm{~kg}}{1.3 \times 10^{7} \mathrm{~m}}} & \\
& =5.5 \times 10^{3} \mathrm{~m} / \mathrm{s} & \leftarrow \mathbf{2} \text { marks }
\end{array}
$$

b) The satellite is then moved to a new orbit with twice the radius of the first orbit. The speed in this orbit is
\square the same as
\square less than
\square more than
the speed in the first orbit. (Check one response.)
c) Using principles of physics, explain your answer to b).

The satellite's speed in a stable orbit is inversely proportional to the square root of orbit radius: $v \propto \frac{1}{\sqrt{r}}$. Therefore, in an orbit with twice the radius of the first, the satellite speed will be lower.
5. a) Find the electric potential at point A and at point B . (Note: $1.0 \mu \mathrm{C}$ is $1.0 \times 10^{-6} \mathrm{C}$)

$$
Q=-15.0 \mu \mathrm{C}
$$

$$
\left.\begin{array}{rl}
V_{A} & =\frac{E_{p}}{q}=\frac{k Q}{r_{A}}=\frac{9.0 \times 10^{9} \times\left(-15.0 \times 10^{-6}\right)}{3.0} \\
& =-45000 \mathrm{~V} \\
V_{B} & =-27000 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{3} \text { marks }
$$

b) What is the potential difference between A and B ?

$$
\Delta V=18000 \mathrm{~V} \quad(\pm 18000 \mathrm{~V} \text { acceptable })
$$

c) 0.036 J of work must be done to move a charge q from A to B . Find the magnitude and polarity of this charge.

$$
Q=-15.0 \mu \mathrm{C}
$$

A
B

$$
\left.\begin{array}{rl}
\Delta V= & \frac{W}{q} \rightarrow q=\frac{W}{\Delta V}=\frac{0.036}{+18000} \\
= & 2.0 \times 10^{-6} \mathrm{C}, \text { positive } \\
& \text { Answer: }+2.0 \times 10^{-6} \mathrm{C}
\end{array}\right\} \leftarrow \mathbf{3} \text { marks }
$$

6. a) Find the value of resistor R_{2}.

$$
\left.\begin{array}{rl}
I_{3} & =I-I_{1} \\
& =2.40-0.60 \\
& =1.80 \mathrm{~A}
\end{array}\right\} \leftarrow \mathbf{1} \text { mark }
$$

$$
\left.\begin{array}{rl}
V_{3} & =I_{3} R_{3} \\
& =1.80(5.0) \\
& =9.0 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{1} \mathbf{~ m a r k}
$$

$$
\left.\begin{array}{rl}
V_{1} & =I_{1} R_{1} \\
& =0.60(6.0) \\
& =3.6 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{1} \text { mark }
$$

$$
\left.\begin{array}{rl}
V_{2} & =9.0-3.6 \\
& =5.4 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{1} \text { mark }
$$

$$
R_{2}=\frac{V_{2}}{I_{1}}=\frac{5.4}{0.60}=9.0 \Omega \leftarrow \mathbf{1} \text { mark }
$$

b) Find the potential difference of the power supply V.

$$
\left.\begin{array}{rl}
V & =V_{3}+V_{4} \\
& =9.0+I_{4} R_{4} \\
& =9.0+(2.40)(10.0) \\
& =9.0+24.0 \\
& =33.0 \mathrm{~V}
\end{array}\right\} \leftarrow \mathbf{2} \text { marks }
$$

7. An automobile starter motor, connected to a 12.0 V battery, produces a back emf of 9.7 V when operating at normal speed. A malfunction prevents the starter motor from turning and the current increases to 180 A . What current does the starter motor draw when operating normally?

$$
\left.\begin{array}{l}
V_{b}=\varepsilon-I r \\
I=\frac{\varepsilon-V_{b}}{r} \\
r=\frac{\varepsilon}{I} \\
r=\frac{12.0 \mathrm{~V}}{180 \mathrm{~A}} \\
r=0.067 \Omega
\end{array}\right\} \leftarrow \mathbf{4} \text { marks }
$$

8. An electric motor is connected to a 9.0 V power supply. The data table below shows how the back emf of the motor, $V_{b a c k}$, varies with the current through the armature, I, as the mechanical load changes.

Back emf $V_{\text {back }}(\mathrm{V})$	7.5	6.0	4.5	3.0	1.5	0
Current $I(\mathrm{~A})$	1.0	2.0	3.0	4.0	5.0	6.0

a) Plot this data on the graph below.

b) Determine the slope of this graph.

$$
\left.\begin{array}{rl}
\text { slope } & =\frac{3.0-6.0 \mathrm{~V}}{4.0-2.0 \mathrm{~A}} \\
& =-1.5 \frac{\mathrm{~V}}{\mathrm{~A}} \\
& =-1.5 \Omega
\end{array}\right\} \leftarrow \mathbf{2} \text { marks }
$$

c) What property of the motor does the slope of this graph represent?
9. A cyclist must do 1000 J of work to speed up from $0 \mathrm{~m} / \mathrm{s}$ to $5.0 \mathrm{~m} / \mathrm{s}$. The same cyclist must do 3000 J of work to speed up from $5.0 \mathrm{~m} / \mathrm{s}$ to $10.0 \mathrm{~m} / \mathrm{s}$. (In both instances friction has been ignored.) Using principles of physics, explain why more work must be done to speed up from $5.0 \mathrm{~m} / \mathrm{s}$ to $10.0 \mathrm{~m} / \mathrm{s}$ than from $0 \mathrm{~m} / \mathrm{s}$ to $5.0 \mathrm{~m} / \mathrm{s}$. (Remember, friction plays no role in this problem.)
(4 marks)

$$
\begin{aligned}
W & =\Delta E \\
& =\Delta E_{k} \text { in this case } \quad \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

$E_{k}=\frac{1}{2} m v^{2}$ (1 mark), so velocity changing by a factor of two will cause kinetic energy to change by a factor of four ($\mathbf{1} \mathbf{~ m a r k) ~ a n d ~ s o ~ t h e ~ w o r k ~ d o n e ~ w i l l ~ b e c o m e ~ e v e r ~ g r e a t e r ~ a s ~ t h e ~}$ velocity increases by uniform amounts. (1 mark)

OR

$W=F \cdot d$ (1 mark), but if the cyclist travels faster while exerting a constant force, for each uniform increment of velocity the distance travelled will become greater ($\mathbf{1}$ mark) and greater. Hence $W=F \cdot d$ yields greater values for W as the distance becomes larger. (2 marks)

END OF KEY

