

PROVINCIAL EXAMINATION

MINISTRY OF EDUCATION

PHYSICS 12

GENERAL INSTRUCTIONS

1. Insert the stickers with your Student I.D. Number (PEN) in the allotted spaces above and on the back cover of this booklet. Under no circumstance is your name or identification, other than your Student I.D. Number, to appear on this booklet.
2. Ensure that in addition to this examination booklet, you have an Examination Response Form. Follow the directions on the front of the Response Form.
3. Disqualification from the examination will result if you bring books, paper, notes or unauthorized electronic devices into the examination room.
4. All multiple-choice answers must be entered on the Response Form using an HB pencil. Multiple-choice answers entered in this examination booklet will not be marked.
5. For each of the written-response questions, write your answer in the space provided in this booklet.
6. When instructed to open this booklet, check the numbering of the pages to ensure that they are numbered in sequence from page one to the last page, which is identified by

END OF EXAMINATION.
7. At the end of the examination, place your Response Form inside the front cover of this booklet and return the booklet and your Response Form to the supervisor.

THIS PAGE INTENTIONALLY BLANK

PHYSICS 12 PROVINCIAL EXAMINATION

Value

Suggested
 Time

1. This examination consists of two parts:

PART A:	30 multiple-choice questions worth two marks each	60
PART B:	9 written-response questions	60

Total: 120 marks 120 minutes
2. Aside from an approved calculator, electronic devices, including dictionaries and pagers, are not permitted in the examination room.
3. The last three pages inside the back cover contain the Table of Constants, Mathematical Equations, Formulae, and Rough Work for Multiple-Choice. These pages may be detached for convenient reference prior to writing this examination.
4. Rough-work space has been incorporated into the space allowed for answering each writtenresponse question. You may not need all of the space provided to answer each question.
5. A calculator is essential for the Physics $\mathbf{1 2}$ Provincial Examination. The calculator must be a hand-held device designed primarily for mathematical computations involving logarithmic and trigonometric functions. Computers, calculators with a QWERTY keyboard, and electronic writing pads will not be allowed. Students must not bring any external devices to support calculators such as manuals, printed or electronic cards, printers, memory expansion chips or cards, or external keyboards. Students may have more than one calculator available during the examination. Calculators may not be shared, and communication between calculators is prohibited during the examination. In addition to an approved calculator, students will be allowed to use rulers, compasses, and protractors during the examination.
6. a) Final answers must include appropriate units.
b) Marks will not be deducted for answers expressed to two or three significant figures.
c) In this examination the zero in a number such as 30 shall be considered to be a significant zero.
7. You are expected to communicate your knowledge and understanding of physics principles in a clear and logical manner. Partial marks will be awarded for steps and assumptions leading to a solution. Full marks will not be awarded for providing only a final answer.

If you are unable to determine the value of a quantity required in order to proceed, you may assume a reasonable value and continue toward the solution. Such a solution, however, may not be eligible for full marks.
8. The time allotted for this examination is two hours.

THIS PAGE INTENTIONALLY BLANK

Value: 60 marks (2 marks per question)
INSTRUCTIONS: For each question, select the best answer and record your choice on the Response Form provided. Using an HB pencil, completely fill in the circle that has the letter corresponding to your answer.

1. The free body diagram shown below represents a crate being dragged towards the left over a rough surface.

Which of the vectors represent the normal force and the friction force acting on the crate?
A.

NORMAL FORCE	FRICTION FORCE
\vec{F}_{1}	\vec{F}_{2}
\vec{F}_{2}	\vec{F}_{3}
\vec{F}_{3}	\vec{F}_{4}
\vec{F}_{4}	\vec{F}_{1}

2. The graph shown below displays velocity v versus time t for a moving object.

The slope of this graph represents the object's
A. mass.
B. momentum.
C. acceleration.
D. displacement.
3. The gravitational field strength on planet X is $5.0 \mathrm{~N} / \mathrm{kg}$. An astronaut of mass 60 kg leaves Earth to visit planet X . What will her mass and weight be when she is on the surface of planet X ?

	MASS	WEIGHT
A.	60 kg	300 N
B.	60 kg	590 N
C.	120 kg	300 N
D.	120 kg	590 N

4. A girl applies a 140 N force to a 35 kg bale of hay at an angle of 28° above horizontal. The friction force acting on the bale is 55 N . What will be the horizontal acceleration of the bale?

A. $\quad 0.31 \mathrm{~m} / \mathrm{s}^{2}$
B. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2}$
C. $2.4 \mathrm{~m} / \mathrm{s}^{2}$
D. $2.6 \mathrm{~m} / \mathrm{s}^{2}$
5. A 5.0 kg concrete block accelerates down a 34° slope at $4.2 \mathrm{~m} / \mathrm{s}^{2}$. Find the coefficient of friction between the block and the slope.

A. 0.13
B. 0.16
C. 0.43
D. 0.67
6. What is the minimum power output of a small electric motor that lifts a 0.050 kg mass through 2.0 m in 30 s ?
A. 0.0017 W
B. 0.017 W
C. 0.033 W
D. 15 W
7. An object travelling due north experiences an impulse due east. The direction of the change in momentum of this object is
A. east.
B. west.
C. north.
D. northeast.
8. A 1.5 kg ball falling vertically strikes the floor with a speed of $12 \mathrm{~m} / \mathrm{s}$ and rebounds upward with a speed of $8.0 \mathrm{~m} / \mathrm{s}$. What is the magnitude and direction of the impulse given to the ball?
A.

IMPULSE	DIRECTION
$6.0 \mathrm{~N} \cdot \mathrm{~s}$	upward
$6.0 \mathrm{~N} \cdot \mathrm{~s}$	downward
$30 \mathrm{~N} \cdot \mathrm{~s}$	upward
$30 \mathrm{~N} \cdot \mathrm{~s}$	downward

9. A net force of 20 N acts for 1.5 s on a 4.0 kg object initially at rest. What is the final kinetic energy of the object?
A. 30 J
B. 110 J
C. 230 J
D. 440 J
10. A 900 kg car travelling at $12 \mathrm{~m} / \mathrm{s}$ due east collides with a 600 kg car travelling at $24 \mathrm{~m} / \mathrm{s}$ due north. As a result of the collision, the two cars lock together and move in what final direction?
A. $45^{\circ} \mathrm{N}$ of E
B. $53^{\circ} \mathrm{N}$ of E
C. $63^{\circ} \mathrm{N}$ of E
D. $69^{\circ} \mathrm{N}$ of E
11. What are the units of torque?
A. $\mathrm{N} \cdot \mathrm{m}$
B. N / m
C. $\mathrm{N} \cdot \mathrm{s}$
D. N / s
12. A uniform 1.60 m board rests on two bricks as shown below. The left brick exerts an upward force of 12 N on the board.

What upward force does the right brick exert?
A. $\quad 3.0 \mathrm{~N}$
B. 12 N
C. 24 N
D. 36 N
13. An object travels with a constant speed in a circular path. The net force on the object is
A. zero.
B. towards the centre.
C. away from the centre.
D. tangent to the object's path.
14. An object attached to a rotating table is moving in a circular path with a constant speed.

Which is the correct free body diagram for the object?
A.

B.

C.

D.

15. A 65 kg student is in a car travelling at $25 \mathrm{~m} / \mathrm{s}$ on a hill of radius 110 m . When the car is at the top of the hill, what upward force does the seat exert on the student?

A. 270 N
B. 370 N
C. 640 N
D. 910 N
16. A 1200 kg car can travel without slipping at a maximum speed of $28 \mathrm{~m} / \mathrm{s}$ in a circular path of radius 70 m on a dry horizontal surface. When it rains, the coefficient of friction is reduced to one half its original value. What is the maximum speed under this wet condition?
A. $\quad 7.0 \mathrm{~m} / \mathrm{s}$
B. $\quad 14 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $28 \mathrm{~m} / \mathrm{s}$
17. Which of the following graphs shows how the gravitational force varies with the distance of separation between two objects?
A.

B.

C.

D.

18. A $5.2 \times 10^{4} \mathrm{~kg}$ rocket is initially at rest on the surface of the earth. If $3.0 \times 10^{11} \mathrm{~J}$ of work is done on this rocket, what maximum altitude h will the rocket reach? (Assume the rocket's mass does not change.)

A. $\quad 5.9 \times 10^{5} \mathrm{~m}$
B. $6.5 \times 10^{5} \mathrm{~m}$
C. $5.8 \times 10^{6} \mathrm{~m}$
D. $6.9 \times 10^{7} \mathrm{~m}$
19. Which of the following correctly describes the polarity of the charges X and Y ?

	POLARITY OF X	POLARITY OF Y
A.	Positive	Negative
B.	Positive	Positive
C.	Negative	Negative
D.	Negative	Positive

20. Three positive charges are fixed as shown in the diagram below.

Calculate the net electric force on \boldsymbol{Q}_{2} due to Q_{1} and Q_{3}.

	MAGNITUDE OF FORCE	DIRECTION OF FORCE
A.	3.1 N	Left
B.	3.1 N	Right
C.	5.9 N	Left
D.	5.9 N	Right

21. A cathode ray tube beam deflects to the location as shown in Diagram I when a certain voltage is applied to the deflecting plates.

Diagram I

Diagram II

The connections to the deflecting plates are then reversed and the deflecting voltage is reduced. Which location in Diagram II best represents the new beam position?
A. Location 1
B. Location 2
C. Location 3
D. Location 4
22. Which of the following correctly labels arrows 1 and 2 and polarities X and Y in the circuit below?

A.

ARROW 1	ARROW 2	POLARITY X	POLARITY Y
Electron Flow	Conventional Current	Positive	Negative
Electron Flow	Conventional Current	Negative	Positive
Conventional Current	Electron Flow	Positive	Negative
Conventional Current	Electron Flow	Negative	Positive

23. Which of the following household electrical appliances has the greatest rate of energy consumption?

	ITEM	VolTAGE	CURRENT
A.	Video Camera	6.0 V	1.6 A
B.	Radio	4.5 V	0.45 A
C.	Cassette Recorder	6.0 V	2.2 A
D.	Ghetto Blaster	12 V	1.4 A

24. Switch S is originally open as shown in the circuit below.

How does the current through resistors R_{1} and R_{2} change when switch S is closed?

	CURRENT THROUGH R_{1}	CURRENT THROUGH R_{2}
A.	increases	increases
B.	increases	decreases
C.	decreases	increases
D.	decreases	decreases

25. In a step-up transformer, how does the secondary voltage V_{s} compare with the primary voltage V_{p}, and the number of turns in the secondary N_{s} compare with the number of turns in the primary N_{p} ?

	Voltage	NUMBER OF TURNS
A.	$V_{s}<V_{p}$	$N_{s}>N_{p}$
B.	$V_{s}>V_{p}$	$N_{s}>N_{p}$
C.	$V_{s}<V_{p}$	$N_{s}<N_{p}$
D.	$V_{s}>V_{p}$	$N_{s}<N_{p}$

26. Two particles Y and Z with equal mass and speed enter a uniform magnetic field and follow the paths as shown. How do their magnitude and polarity of charge compare?

	MAGNITUDE OF CHARGE	POLARITY
A.	$\mathrm{Y}<\mathrm{Z}$	same charge
B.	$\mathrm{Y}<\mathrm{Z}$	opposite charge
C.	$\mathrm{Y}>\mathrm{Z}$	same charge
D.	$\mathrm{Y}>\mathrm{Z}$	opposite charge

27. A wire carrying a current of 5.0 A is in a uniform $3.2 \times 10^{-2} \mathrm{~T}$ magnetic field as shown. What is the force on the 0.15 m length of wire?

A. 0 N
B. $1.6 \times 10^{-2} \mathrm{~N}$
C. $2.4 \times 10^{-2} \mathrm{~N}$
D. $4.0 \times 10^{-2} \mathrm{~N}$
28. A single coil of wire of area $6.0 \times 10^{-3} \mathrm{~m}^{2}$ is positioned in a uniform 0.18 T magnetic field as shown. The coil is rotated 90° about axis XY in $4.2 \times 10^{-3} \mathrm{~s}$. What average emf is induced by the coil?

A. 0 V
B. 0.13 V
C. 0.26 V
D. 43 V
29. A part of a coil of wire is placed in a uniform magnetic field as shown. Which two directions of motion would immediately induce an emf in the coil?

A. 1 and 2
B. 1 and 3
C. 2 and 3
D. 2 and 4
30. An electric motor is connected to a constant source of potential. Considering back emf, which of the following observations is correct?
A. At full speed the applied voltage increases.
B. At full speed the armature resistance increases.
C. If the motor is kept from rotating at full speed, the armature heats up.
D. If the motor is kept from rotating at full speed, the armature temperature decreases.

INSTRUCTIONS: 1. Rough-work space has been incorporated into the space allowed for answering each written-response question. You may not need all of the space provided to answer each question.
2. a) Final answers must include appropriate units.
b) Marks will not be deducted for answers expressed to two or three significant figures.
c) In this examination the zero in a number such as 30 shall be considered to be a significant zero.
3. You are expected to communicate your knowledge and understanding of physics principles in a clear and logical manner. Partial marks will be awarded for steps and assumptions leading to a solution. Full marks will not be awarded for providing a final answer only.
4. If you are unable to determine the value of a quantity required in order to proceed, you may assume a reasonable value and continue toward the solution. Such a solution, however, may not be eligible for full marks.

Full marks will NOT be given for the final answer only.

1. A rock is thrown from a clifftop at $18 \mathrm{~m} / \mathrm{s}, 25^{\circ}$ above the horizontal. It lands on the beach 4.2 s later.

a) What is the height h of the cliff?
b) How far from the base of the cliff d did the rock land?

ANSWER:
a) height:
b) horizontal distance:
2. A 0.030 kg toy car is pushed back against a spring-based launcher as shown in Diagram 1.

Diagram 2 shows a graph of the force required to compress the spring 0.090 m .
Diagram 2

a) What is the work done in compressing the spring?
b) Assuming no losses due to heat, what maximum speed is reached by the toy car when it is released?
c) If in fact the maximum kinetic energy of the car is 0.18 J , what is the efficiency of the spring-based launcher?
(1 mark)

ANSWER:

a) work:
b) maximum speed:
c) efficiency:
3. Peter exerts a horizontal force F on a 12 kg bucket of concrete so that the supporting rope makes an angle of 20° with the vertical.

a) Find the tension force in the supporting rope.
b) Peter now exerts a new force which causes the rope to make a greater angle with the vertical. How will the tension force in the supporting rope change?
\square The tension force will increase.
\square The tension force will decrease.
\square The tension force will remain the same.
(Check one response.)
c) Using principles of physics, explain your answer to b).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ANSWER:
a) tension force: \qquad
4. A 650 kg satellite in circular orbit around Earth has an orbital period of $1.5 \times 10^{4} \mathrm{~s}$.
a) What is the satellite's orbital radius?
(5 marks)

ANSWER:
a) radius:
b) potential energy:
5. An electron moving at $7.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ enters an electric field between parallel plates by passing through a small hole in one of the plates.

What is the impact speed of the electron on the second plate?

ANSWER:

speed:
6. What is the power dissipated in the 33Ω resistor in the circuit shown below?

ANSWER:

power dissipated:
7. A motor is connected to a constant 120 V source and draws a current of 38.0 A when it first starts up. At its normal operating speed, the motor draws a current of 2.50 A .
a) What is the resistance of the armature coil? (3 marks)
b) What is the back emf at normal speed?

ANSWER:

a) resistance:
b) back emf:
8. A power supply was connected to a resistor and a student plotted the graph of current, I, flowing through the resistor versus time, t, as shown below.

a) Calculate the area under the graph between $t=0 \mathrm{~s}$ and $t=30 \mathrm{~s}$.
(2 marks)
b) What does this area represent?
\qquad
\qquad
c) The same power supply is connected to a resistor of greater resistance. For this new set-up, sketch a possible graph on the axes below and label it c).

ANSWER:
a) area: \qquad
9. a) In a cathode ray tube, the purpose of the coils is to

\square focus the beam of electrons.
\square deflect the beam of electrons.
\square decrease the speed of the electrons.
(Check one response.)
(1 mark)
b) Using the principles of electromagnetism, explain how this effect on the electrons is achieved by the coils.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF EXAMINATION

Gravitational constant .. $\quad G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity at the surface of Earth (for the purposes of this examination) $\quad g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

Earth
radius

$$
\begin{aligned}
& =6.38 \times 10^{6} \mathrm{~m} \\
& =1.50 \times 10^{11} \mathrm{~m} \\
& =8.61 \times 10^{4} \mathrm{~s} \\
& =3.16 \times 10^{7} \mathrm{~s} \\
& =5.98 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

radius of orbit about Sun ... $=1.50 \times 10^{11} \mathrm{~m}$
period of rotation
period of revolution about Sun
mass

Moon

radiu	$=1.74 \times 10^{6} \mathrm{~m}$
radius of orbit about Earth	$=3.84 \times 10^{8} \mathrm{~m}$
period of rotation.	$=2.36 \times 10^{6} \mathrm{~s}$
period of revolution about Earth	$=2.36 \times 10^{6} \mathrm{~s}$
mas	$=7.35 \times 10^{22} \mathrm{~kg}$

Sun

$$
\text { mass.. } \quad=1.98 \times 10^{30} \mathrm{~kg}
$$

Speed of light
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

You may detach this page for convenient reference. Exercise care when tearing along perforations.

For Right-angled Triangles:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \sin \theta=\frac{b}{c} \quad \cos \theta=\frac{a}{c} \quad \tan \theta=\frac{b}{a}
\end{aligned}
$$

$$
\text { area }=\frac{1}{2} a b
$$

For All Triangles:

$$
\begin{aligned}
& \text { area }=\frac{1}{2} \text { base } \times \text { height } \\
& \sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}
\end{aligned}
$$

Sine Law: $\quad \frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}$

Cosine Law: $c^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{C}$

Circle:

Circumference $=2 \pi r$

$$
\text { Area }=\pi r^{2}
$$

Sphere:

Surface area $=4 \pi r^{2}$

Volume $=\frac{4}{3} \pi r^{3}$

Quadratic Equation:

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vector Kinematics in Two Dimensions:

$$
\begin{array}{ll}
v=v_{0}+a t & \bar{v}=\frac{v+v_{0}}{2} \\
v^{2}=v_{0}^{2}+2 a d & d=v_{0} t+\frac{1}{2} a t^{2}
\end{array}
$$

Vector Dynamics:

$$
\begin{aligned}
& F_{\text {net }}=m a \quad F_{\mathrm{g}}=m g \\
& F_{\mathrm{fr}}=\mu F_{\mathrm{N}}
\end{aligned}
$$

Work, Energy, and Power:

$$
\begin{array}{ll}
W=F d & E_{\mathrm{p}}=m g h \\
E_{\mathrm{k}}=\frac{1}{2} m v^{2} & P=\frac{W}{t}
\end{array}
$$

Momentum:

$$
p=m v \quad \Delta p=F \Delta t
$$

Equilibrium:

$$
\tau=F d
$$

Circular Motion:

$$
a_{\mathrm{c}}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}
$$

Gravitation:

$$
F=G \frac{m_{1} m_{2}}{r^{2}} \quad E_{\mathrm{p}}=-G \frac{m_{1} m_{2}}{r}
$$

You may detach this page for convenient reference. Exercise care when tearing along perforations.

Electrostatics:

$$
\begin{array}{cc}
F=k \frac{Q_{1} Q_{2}}{r^{2}} & E=\frac{F}{Q} \\
\Delta V=\frac{\Delta E_{\mathrm{p}}}{Q} & E=\frac{\Delta V}{d} \\
E_{\mathrm{p}}=k \frac{Q_{1} Q_{2}}{r} & V=\frac{k Q}{r}
\end{array}
$$

Electric Circuits:

$$
\begin{array}{ll}
I=\frac{Q}{t} & V=I R \\
V_{\text {terminal }}=\mathcal{E} \pm I r & P=I V
\end{array}
$$

Electromagnetism:

$$
\begin{array}{ll}
F=B I l & F=Q v B \\
B=\mu_{0} n I=\mu_{0} \frac{N}{l} I & \mathcal{E}=B l v \\
\Phi=B A & \mathcal{E}=-N \frac{\Delta \Phi}{\Delta t} \\
V_{\text {back }}=\varepsilon-I r & \\
\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}}=\frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{I_{\mathrm{p}}}{I_{\mathrm{s}}} &
\end{array}
$$

You may detach this page for convenient reference. Exercise care when tearing along perforations.

PHYSICS 12

August 1998

Course Code $=$ PH

PHYSICS 12

August 1998

Course Code $=$ PH

Score for Question 1:
1.
(7)

Score for Question 8:
8.
(5)
$\begin{aligned} & \text { Score for } \\ & \text { Question 2: }\end{aligned}$
2. $\frac{}{(7)}$
Score for Question 9:
9.

Score for Question 3:
3.
(9)

Score for Question 4:
4.
(7)

Score for Question 5:
5. \qquad

Score for Question 6:
6. \qquad

Score for Question 7:
7.
(7)

