Physics 12

August 1998 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers

1. Vector Kinematics in Two Dimensions and
Dynamics and Vector Dynamics
2. Work, Energy and Power
and
Momentum
3. Equilibrium
4. Circular Motion
and
Gravitation
5. Electrostatics
6. Electric Circuits
7. Electromagnetism

Sub-Organizers
A, B

C, D
E
F, G
H
I

J
K, L
M, N
O, P

PART A: Multiple Choice (each question worth TWO marks)

Q	K	C	CO	PLO	Q	K	C	CO	PLO
1.	B	K	1	D4	16.	C	H	4	C8, I4
2.	C	U	1	A10	17.	D	K	4	J1, 3
3.	A	U	1	C7	18.	B	U	4	J6
4.	B	U	1	D3, 5, C4	19.	A	U	5	K6
5.	B	U	1	D6, C8, C4	20.	B	U	5	K3
6.	C	U	2	E10	21.	C	H	5	L7
7.	A	K	2	F1	22.	C	K	6	M3
8.	C	U	2	F4	23.	D	U	6	N3
9.	B	U	2	F4, E7	24.	C	H	6	M5, 6
10.	B	U	2	G1, 3	25.	B	K	7	P12
11.	A	K	3	H4	26.	D	U	7	O4, 6
12.	C	U	3	H11	27.	C	U	7	O5
13.	B	K	4	I3	28.	C	U	7	P3, 5
14.	B	U	4	D4, I5	29.	D	U	7	P4
15.	A	U	4	I4, 5	30.	C	U	7	P10

Multiple Choice $=\mathbf{6 0}$ marks

PART B: Written Response

Q	\mathbf{B}	\mathbf{C}	$\mathbf{C O}$	\mathbf{S}	CGR
1.	1				
2.	2	U	1	7	B8, 7
2.	3	U	2	7	E3, 10
3.	4	U	3	9	H3
4.	5	U	5	7	J6, 9
5.	6	U	6	7	L6
6.	7	U	7	7	M5, 6, N2
7.	8	H	7	P9	
8.	H	7	5	A10	
9.	9	7	4	O7	

Written Response $=\mathbf{6 0}$ marks

Multiple Choice $=60$ (30 questions)
Written Response $=60$ (9 questions)
EXAMINATION TOTAL = $\mathbf{1 2 0}$ marks

LEGEND:		
Q = Question Number	$\mathbf{B}=$ Score Box Number	$\mathbf{C}=$ Cognitive Level
CO = Curriculum Organizer	$\mathbf{K}=$ Keyed Response	$\mathbf{S}=$ Score
PLO = Prescribed Learning Outcome		

Q = Question Number
$\mathbf{B}=$ Score Box Number
$\mathbf{K}=$ Keyed Response
S = Score

PLO $=$ Prescribed Learning Outcome

1. A rock is thrown from a clifftop at $18 \mathrm{~m} / \mathrm{s}, 25^{\circ}$ above the horizontal. It lands on the beach 4.2 s later.

a) What is the height h of the cliff?

$$
\begin{aligned}
d & =v_{0} t+\frac{1}{2} a t^{2} & & \leftarrow \mathbf{1} \text { mark } \\
& =\left(18 \sin 25^{\circ}\right)(4.2)+\frac{1}{2}(-9.8)(4.2)^{2} & & \leftarrow \mathbf{2} \text { marks } \\
& =-54 \mathrm{~m} \quad(h=54 \mathrm{~m}) & & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

b) How far from the base of the cliff d did the rock land?

$$
\begin{array}{rlrl}
d & =v t & \leftarrow \mathbf{1} \text { mark } \\
& =\left(18 \cos 25^{\circ}\right)(4.2) & & \leftarrow \mathbf{1} \text { mark } \\
& =69 \mathrm{~m} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

2. A 0.030 kg toy car is pushed back against a spring-based launcher as shown in Diagram 1 .

Diagram 1

Diagram 2 shows a graph of the force required to compress the spring 0.090 m .
Diagram 2

a) What is the work done in compressing the spring?

Suggestion: Allow 1 to $\mathbf{3}$ sig figs for all parts of question 2.

$$
\begin{aligned}
W & =\text { Area under graph } \\
& =\frac{1}{2}(0.09 \mathrm{~m})(20 \mathrm{~N}) \\
& =0.90 \mathrm{~N} \cdot \mathrm{~m} \quad(0.90 \mathrm{~J}) \quad \leftarrow \mathbf{3} \text { marks }
\end{aligned}
$$

(Will accept 0.9 J)
b) Assuming no losses due to heat, what maximum speed is reached by the toy car when it is released?

$$
\begin{aligned}
W & =\Delta E_{k} \\
\therefore \Delta E_{k} & =0.90 \mathrm{~J} \\
\therefore \frac{1}{2} m v_{\max }^{2} & =0.90 \mathrm{~J} \\
\therefore v_{\max } & =\left(\frac{2 \cdot 0.90 \mathrm{~J}}{0.030 \mathrm{~kg}}\right)^{\frac{1}{2}} \\
& =7.7 \mathrm{~m} / \mathrm{s} \quad \leftarrow \mathbf{3} \text { marks }
\end{aligned}
$$

c) If in fact the maximum kinetic energy of the car is 0.18 J , what is the efficiency of the spring-based launcher?

Efficiency $=\frac{\text { Energy out }}{\text { Energy in }} \times 100$
\therefore Efficiency $=\frac{0.18 \mathrm{~J}}{0.90 \mathrm{~J}} \times 100=20 \% \leftarrow \mathbf{1}$ mark
(Accept 0.2)
3. Peter exerts a horizontal force F on a 12 kg bucket of concrete so that the supporting rope makes an angle of 20° with the vertical.

a) Find the tension force in the supporting rope.

$$
\begin{array}{rlrl}
F_{T} & =\frac{118}{\cos 20^{\circ}} & \leftarrow \mathbf{2} \text { marks } \\
& =125 \mathrm{~N} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

$F_{T}=1.3 \times 10^{2} \mathrm{~N}$
b) Peter now exerts a new force which causes the rope to make a greater angle with the vertical. How will the tension force in the supporting rope change?
\square The tension force will increase.
\square The tension force will decrease.
\square The tension force will remain the same.
(Check one response.)
(1 mark)

The vertical component of the tension is equal to the weight and is unchanged. Peter's horizontal force increases with a larger angle. The horizontal component of the tension is equal to Peter's and therefore is also increased. Thus, the resultant tension is increased.
4. A 650 kg satellite in circular orbit around Earth has an orbital period of $1.5 \times 10^{4} \mathrm{~s}$.
a) What is the satellite's orbital radius?

$$
F_{G}=F_{C}
$$

$$
\begin{array}{rlrl}
\frac{G m M}{R^{2}} & =\not / \frac{4 \pi^{2}}{T^{2}} R & \leftarrow \mathbf{2} \text { marks } \\
R^{3} & =\frac{G M T^{2}}{4 \pi^{2}}=\frac{6.67 \times 10^{-11}\left(5.98 \times 10^{24}\right)\left(1.5 \times 10^{4}\right)^{2}}{4 \pi^{2}} & \\
R & =1.3 \times 10^{7} \mathrm{~m} & & \leftarrow \mathbf{2} \text { marks }
\end{array}
$$

b) What is the gravitational potential energy of this satellite?

$$
\begin{aligned}
E_{p} & =-\frac{G m M}{R} & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{-\left(6.67 \times 10^{-11}\right)(650)\left(5.98 \times 10^{24}\right)}{\left(1.3 \times 10^{7}\right)} &
\end{aligned}
$$

$$
E_{p}=-2.0 \times 10^{10} \mathrm{~J} \quad \leftarrow \mathbf{1} \text { mark }
$$

5. An electron moving at $7.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ enters a region of electric field between parallel plates by passing through a small hole in one of the plates.

What is the impact speed of the electron on the second plate?

$$
\begin{aligned}
E_{k} & =E_{k_{i}}+\Delta E_{p} \\
E_{k_{i}} & =\frac{1}{2} m v_{i}^{2} \\
& =\frac{1}{2} \cdot 9.11 \times 10^{-31} \mathrm{~kg} \cdot\left(7.5 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& =2.56 \times 10^{-17} \mathrm{~J}
\end{aligned}
$$

$$
\leftarrow \mathbf{1} \text { mark }
$$

$$
\Delta E_{p}=Q V
$$

$$
=1.6 \times 10^{-19} \mathrm{C} \cdot 250 \mathrm{~V}
$$

$$
=4.0 \times 10^{-11} \mathrm{~J}
$$

$$
\therefore E_{k}=2.56 \times 10^{-17} \mathrm{~J}+4.0 \times 10^{-17} \mathrm{~J} \quad \leftarrow \mathbf{2} \text { marks }
$$

$$
=6.56 \times 10^{-17} \mathrm{~J}
$$

$$
\therefore v_{f}=\left(\frac{2 \cdot 6.56 \times 10^{-17} \mathrm{~J}}{9.11 \times 10^{-31} \mathrm{~kg}}\right)^{\frac{1}{2}}
$$

$$
=1.2 \times 10^{7} \mathrm{~m} / \mathrm{s} \quad \leftarrow \mathbf{2} \text { marks }
$$

6. What is the power dissipated in the 33Ω resistor in the circuit shown below?

$$
\begin{aligned}
\frac{1}{R_{\|}} & =\frac{1}{100}+\frac{1}{(10+33)} \\
\therefore R_{\|} & =30.1 \Omega \\
R_{T} & =10 \Omega+30.1 \Omega+10 \Omega
\end{aligned}
$$

$$
=50.1 \Omega \quad \leftarrow 2 \text { marks }
$$

$$
I_{T}=\frac{V}{R_{T}}
$$

$$
=\frac{12 \mathrm{~V}}{50.1 \Omega}
$$

$$
=0.24 \mathrm{~A}
$$

$$
\leftarrow \mathbf{1} \text { mark }
$$

$$
V_{\|}=I_{T} \cdot R_{\|}
$$

$$
=0.24 \mathrm{~A} \cdot 30.1 \Omega
$$

$$
=7.22 \mathrm{~V} \quad \leftarrow \mathbf{2} \text { marks }
$$

$$
\begin{array}{rlr}
\therefore I_{33} & =\frac{V_{\|}}{(33+10) \Omega} \\
& =0.17 \mathrm{~A} & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{array}
$$

$$
\therefore P_{33}=I^{2} R
$$

$$
=(0.17)^{2} \cdot 33 \Omega
$$

$$
=0.95 \mathrm{~W}
$$

7. A motor is connected to a constant 120 V source and draws a current of 38.0 A when it first starts up. At its normal operating speed, the motor draws a current of 2.50 A .
a) What is the resistance of the armature coil? (3 marks)

$$
V=I R
$$

$$
120=(38.0) R
$$

$$
R=3.16 \Omega \quad \leftarrow \mathbf{3} \text { marks }
$$

b) What is the back emf at normal speed?

$$
\begin{array}{rlrl}
\boldsymbol{\varepsilon}_{\text {back }} & =V_{\text {applied }}-I R & & \leftarrow \mathbf{2} \text { marks } \\
& =120-(2.50)(3.16) & \\
& =112 \mathrm{~V} & \leftarrow \mathbf{2} \text { marks }
\end{array}
$$

8. A power supply was connected to a resistor and a student plotted the graph of current, I, flowing through the resistor versus time, t, as shown below.

a) Calculate the area under the graph between $t=0 \mathrm{~s}$ and $t=30 \mathrm{~s}$.

$$
\begin{aligned}
& \text { Area }=(6 \mathrm{~A})(30 \mathrm{~s}) \\
& 180 \mathrm{~A} \cdot \mathrm{~s}=180 \mathrm{C}
\end{aligned}
$$

b) What does this area represent?

This area represents the charge delivered.

c) The same power supply is connected to a resistor of greater resistance. For this new set-up, sketch a possible graph on the axes below and label it c).

9. In a cathode ray tube, the purpose of the coils is to

\square focus the beam of electrons.
\square deflect the beam of electrons.
\square decrease the speed of the electrons.
(Check one response.)
(1 mark)
b) Using the principles of electromagnetism, explain how this effect on the electrons is achieved by the coils.

The electrons are already moving by the time they reach the area between the coils. By allowing current to travel through the coils, a magnetic field is produced. This magnetic field applies a force on the moving electron. $(F=q v B)$

By changing the magnitude and direction of the current through the coils, the magnitude and direction of the electron deflection can be controlled.

END OF KEY

