Physics 12

August 1997 Provincial Examination
Answer Key / Scoring Guide

TOPICS: 1. Kinematics and Dynamics
2. Energy and Momentum
3. Equilibrium
4. Circular Motion and Gravitation
5. Electrostatics and Circuitry
6. Electromagnetism
7. Quantum Mechanics
8. Fluid Theory
9. AC Circuitry and Electronics

PART A: Multiple Choice

Q	C	T	K	S	CGR	Q	C	T	K	S	CGR
1.	K	1	D	2	I C4	16.	U	5	B	2	VI A6
2.	K	1	C	2	II A1	17.	U	5	A	2	VI A5, II A2
3.	U	1	B	2	I B8, C6	18.	U	5	A	2	VI B3, 2
4.	U	1	A	2	II A2, B3, 6	19.	U	5	B	2	VI B1, 2, 3
5.	H	1	D	2	II A5, 6, B2, 3, 6	20.	K	5	C	2	VII A1, 3
6.	K	2	D	2	III A1	21.	U	5	A	2	VII A6, 8, 10
7.	U	2	D	2	III A4	22.	U	5	B	2	VII A6, 8
8.	U	2	C	2	III B2, C5	23.	U	5	B	2	VII A6, 7
9.	U	3	A	2	IV B6, 8, II A5	24.	H	5	A	2	VII A10, 11
10.	K	4	D	2	V B1, 2	25.	K	6	B	2	VIII A2
11.	U	4	B	2	V A6	26.	U	6	C	2	VIII B2
12.	H	4	D	2	V A6, II B3	27.	U	6	D	2	VIII A4, 7
13.	U	4	A	2	V B12, III C9	28.	K	6	C	2	VIII B3
14.	H	4	C	2	V B6, 8	29.	U	6	B	2	VIII B11
15.	K	5	A	2	VI A7	30.	U	6	D	2	VIII B13

PART B: Written Response

Q	B	C	T	S	CGR
1.	1				
2.	2	U	1	7	II A2, 5, B5, 6
3.	3	H	2	9	III A6, C9
4.	4	U	3	7	IV B8
5.	5	U	5	7	II B6, V A6
6.	6	U	6	7	VI A1, 3
7.	7	H	6	7	VI B3, VIII A6

PART C: Elective Topics

Only one of the following sections will be chosen. Score only one set of boxes: $(8,9,10)$ or $(11,12,13)$ or (14, 15, 16). Maximum possible score for Part C is 12.

	Q	B	C	T	S	CGR
Section I	1.	8	U	7	3	II A6
	2.	9	U	7	4	II A14, B5
	3.	10	U	7	5	II A9
	or					
	Q	B	C	T	S	CGR
Section II	1.	11	U	8	3	III A2
	2.	12	U	8	4	III A9
	3.	13	U	8	5	III A13
	or					
	Q	B	C	T	S	CGR
Section III	1.	14	U	9	3	I A3
	2.	15	U	9	4	I E5
	3.	16	U	9	5	I C2, 7
	Multiple Choice $=60$ (30 questions)					
	Written Response $=60$ (10 questions)					
	Total $=120$ marks					

LEGEND:

$\mathbf{Q}=$ Question Number	$\mathbf{C}=$ Cognitive Level	$\mathbf{T}=$ Topic
$\mathbf{K}=$ Keyed Response	$\mathbf{S}=$ Score	$\mathbf{C G R}=$ Curriculum Guide Reference
$\mathbf{B}=$ Score Box Number		

1. In the diagram shown, the tension in the cord connecting the hanging mass and cart is 43 N .

a) Draw and label a free body diagram for the cart and the hanging mass.

b) Determine the mass of the cart.

$$
a=\frac{F_{\text {net }}}{m}=\frac{60-43}{6.1}=2.75 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
F_{n e t}=m a
$$

$$
F_{T}=m a
$$

$$
m=\frac{F_{T}}{a}=\frac{43}{2.75}=16 \mathrm{~kg} \quad \leftarrow \mathbf{5} \text { marks }
$$

2. A 3.0 kg car A travelling $8.5 \mathrm{~m} / \mathrm{s}$ on a frictionless track collides and sticks on to a stationary 2.0 kg car B .

a) The combined cars will reach what height h ?
$\left.\begin{array}{l}\begin{array}{l}P_{0}=P_{f} \\ (3.0)(8.5)+(2.0)(0)=(5.0) v \\ v=5.1 \mathrm{~m} / \mathrm{s}\end{array} \\ E_{T_{0}}=E_{T_{f}} \\ \frac{1}{2} m v^{2}=m g h \\ \frac{1}{2}(5.0)(5.1)^{2}=(5.0)(9.8) h \\ h=1.3 \mathrm{~m}\end{array}\right\} \leftarrow \mathbf{2}$ marks
b) The steepness of the slope is decreased as shown below.

New Slope

With this decreased slope, the combined cars will reach (check one response)a lesser height.
the same height.
a greater height.
c) Using principles of physics, explain your answer to b).

The steepness of the slope does not matter. All of the cars kinetic energy will be transferred to gravitational potential energy. Since the original kinetic energy of the cars has not changed, they must have the same potential. Therefore, they go to the same vertical height.
3. A 3.8 m uniform beam is attached to the ceiling with a hinge at A and a cord with a tension of 300 N at B .

Determine the mass of the beam.

$$
\begin{array}{cc}
\tau_{c}=\tau_{c c} & \leftarrow \mathbf{1} \text { mark } \\
\frac{\ell}{2} F \sin \theta=\ell F \sin \theta & \leftarrow \mathbf{3} \text { marks } \\
1.9(9.8 m) \sin 70^{\circ}=3.8(300) & \leftarrow \mathbf{2} \text { marks } \\
m=65 \mathrm{~kg} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

4. A 3.5 kg object is suspended by a string and moves in a horizontal circle of radius 0.60 m . The tension in the string is 36 N .

a) What is the magnitude of the net force on the object?

$$
\sin 18^{\circ}=\frac{F_{n e t}}{F_{T}}
$$

$$
\begin{aligned}
F_{\text {net }} & =F_{T} \sin 18^{\circ} \\
& =(36) \sin 18^{\circ} \\
F_{\text {net }} & =11 \mathrm{~N} \quad \leftarrow \mathbf{3} \text { marks }
\end{aligned}
$$

b) What is the period of revolution of the object?

$$
\begin{aligned}
F_{n e t} & =\frac{m 4 \pi^{2} r}{T^{2}} & \leftarrow \mathbf{2} \text { marks } \\
T^{2} & =\frac{m 4 \pi^{2} r}{F_{n e t}} & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{(3.5)\left(4 \pi^{2}\right)(0.60)}{11} &
\end{aligned}
$$

$$
T=2.7 \mathrm{~s}
$$

$\leftarrow 1$ mark
5. A $-4.2 \times 10^{-6} \mathrm{C}$ charge, is placed between two stationary charges, Q_{1} and Q_{2}, as shown below.

$$
Q_{1}=2.5 \times 10^{-6} \mathrm{C} \quad-4.2 \times 10^{-6} \mathrm{C} \quad Q_{2}=7.3 \times 10^{-6} \mathrm{C}
$$

\oplus

What is the magnitude and direction of the net force on the $-4.2 \times 10^{-6} \mathrm{C}$ charge due to the two stationary charges?

$$
\begin{array}{ll}
F_{\text {net }}=F_{1}+F_{2} & \leftarrow \mathbf{1} \text { mark } \\
\begin{aligned}
F_{1}=\frac{k Q_{1} Q}{R^{2}}=\frac{9.00 \times 10^{9} \times 2.5 \times 10^{-6} \times-4.2 \times 10^{-6} \mathrm{C}}{(0.02)^{2}}=-236.25 \mathrm{~N}(\text { left }) & \leftarrow \mathbf{2} \text { marks } \\
F_{2}=\frac{k Q_{2} Q}{R^{2}}=\frac{9.00 \times 10^{9} \times 7.3 \times 10^{-6} \times-4.2 \times 10^{-6} \mathrm{C}}{(0.030)^{2}}=-306.6 \mathrm{~N}(\text { right }) & \leftarrow \mathbf{2} \text { marks } \\
\begin{array}{ll}
\begin{array}{c}
236.25 \mathrm{~N} \\
\leftarrow
\end{array} & \\
F_{\text {net }}=306.6-236.25 & \\
& =70 \mathrm{~N} \text { (right) }
\end{array} & \leftarrow \mathbf{1} \text { mark } \\
& \leftarrow \mathbf{1} \text { mark }
\end{aligned}
\end{array}
$$

6. Electrons accelerated from rest through a potential difference of 300 V enter a $4.1 \times 10^{-2} \mathrm{~T}$ magnetic field at right angles. What is the radius of curvature of the path taken by the electrons?

$$
\left.\begin{array}{c}
P E=K E \\
q V=\frac{1}{2} m v^{2} \\
\left(1.6 \times 10^{-19}\right)(300)=\frac{1}{2}\left(9.11 \times 10^{-31}\right) v^{2} \\
v=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{array}\right\} \leftarrow \mathbf{3} \text { marks }
$$

$$
\text { net } F_{B}=F c
$$

$$
B q v=\frac{m v^{2}}{r}
$$

$$
\leftarrow 4 \text { marks }
$$

$$
r=\frac{m v}{B q}=\frac{\left(9.11 \times 10^{-31}\right)\left(1.0 \times 10^{7}\right)}{0.041 \times\left(1.6 \times 10^{-19}\right)}=1.4 \times 10^{-3} \mathrm{~m}
$$

7. An ideal transformer is connected to a 12 V ac power supply. The light bulb connected to the secondary of the transformer is lit (Figure A). The transformer is then connected to a 12 V dc battery (Figure B).

Figure A

Figure B

a) The bulb will (check one response)
not be lit.
\square be dimmer.
\square have the same brightness.
\square be brighter.
b) Using principles of physics, explain your answer to a).

Faraday's law states that an induced current is produced by a changing flux. Since a battery provides a dc current there is no flux change in the transformer. Therefore, there is no induced current.

PART C: ELECTED TOPICS

SECTION I: Quantum Mechanics

1. What is the wavelength of a 2.1 eV photon?

$$
\begin{array}{rlrl}
E & =\frac{h c}{\lambda} & \leftarrow \mathbf{1} \text { mark } \\
\lambda & =\frac{h c}{E} & & \\
& =\frac{\left(4.14 \times 10^{-15}\right)\left(3.0 \times 10^{8}\right)}{2.1} & \leftarrow \mathbf{1} \text { mark } \\
& =590 \mathrm{~nm} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

$$
\begin{array}{cc}
75 \mathrm{eV}=1.2 \times 10^{-17} \mathrm{~J} & \leftarrow \mathbf{1} \text { mark } \\
\frac{1}{2}\left(9.11 \times 10^{-31}\right) v^{2}=1.2 \times 10^{-17} & \\
v=5.13 \times 10^{6} \mathrm{~m} / \mathrm{s} & \leftarrow \mathbf{1} \text { mark } \\
\lambda=\frac{h}{m v}=\frac{6.63 \times 10^{-34}}{\left(9.11 \times 10^{-31}\right)\left(5.13 \times 10^{6}\right)} & \\
\lambda=1.4 \times 10^{-10} \mathrm{~m} & \leftarrow \mathbf{2} \text { marks }
\end{array}
$$

3. The longest wavelength of light that will emit photoelectrons from a metal surface is $2.4 \times 10^{-7} \mathrm{~m}$. What is the maximum kinetic energy of the electrons emitted by light of wavelength $1.1 \times 10^{-7} \mathrm{~m}$? (5 marks)

$$
\begin{array}{rlr}
W & =h f_{0} \\
W & =\frac{\left(6.63 \times 10^{-34}\right)\left(3.00 \times 10^{8}\right)}{2.4 \times 10^{-7}} & \\
& =8.29 \times 10^{-19} \mathrm{~J} & \leftarrow \mathbf{2} \text { marks } \\
E_{k} & =h f-W & \\
& =\frac{\left(6.63 \times 10^{-34}\right)\left(3.00 \times 10^{8}\right)}{1.1 \times 10^{-7}}-8.29 \times 10^{-19} & \\
& =9.8 \times 10^{-19} \mathrm{~J} & \leftarrow \mathbf{3} \text { marks }
\end{array}
$$

SECTION II: Fluid Theory

1. A piece of styrofoam can withstand a maximum pressure of $2.5 \times 10^{3} \mathrm{~Pa}$ without being crushed. A 120 kg block is to be placed on the styrofoam. What is the minimum area of the bottom of the block that would prevent crushing the styrofoam?

$$
\begin{array}{rlrl}
P & =\frac{F}{A} & \leftarrow \mathbf{1} \text { mark } \\
A & =\frac{F}{P} & \\
& =\frac{m g}{P} & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{(120)(9.8)}{2.5 \times 10^{3}} & & \\
& =0.47 \mathrm{~m}^{2} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

2. A weather balloon has a total weight of 18 N when it is inflated to a volume of $6.0 \mathrm{~m}^{3}$. What maximum equipment load (in Newtons) can it lift?

$$
\left.\begin{array}{rl}
F_{B}=\rho g V \\
& =(1.29)(9.8)(6.0) \\
& =75.8 \mathrm{~N} \\
F_{B} & =W_{\text {balloon }}+W_{\text {equipment }} \\
75.8 \mathrm{~N} & =18 \mathrm{~N}+W_{\text {equipment }} \\
W_{\text {equipment }} & =58 \mathrm{~N}
\end{array}\right\} \leftarrow \mathbf{2} \text { marks }
$$

3. The outlet of a fresh water dam is 60 m below the surface as shown. The atmospheric pressure at the outlet P_{2} is 760 Pa greater than at the surface P_{1}.

What is the speed of the water v_{2} at the outlet?

$$
\begin{aligned}
P_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2} & =P_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2} & & \leftarrow \mathbf{1} \text { mark } \\
\text { let } v_{1} & =0 ; h_{2}=0 & & \leftarrow \mathbf{1} \text { mark } \\
\left(P_{1}-P_{2}\right)+\rho g h_{1} & =\frac{1}{2} \rho v_{2}^{2} & & \\
(-760)+(1000)(9.8)(60) & =\frac{1}{2}(1000) v_{2}^{2} & & \leftarrow \mathbf{2} \text { marks } \\
v_{2} & =34 \mathrm{~m} / \mathrm{s} & & \leftarrow \mathbf{1} \text { mark }
\end{aligned}
$$

SECTION III: AC Circuitry and Electronics

1. A 12 V battery is connected to a capacitor. If $4.2 \times 10^{-4} \mathrm{C}$ of charge flows from the battery to fully charge this capacitor, what is the value of the capacitor?
(3 marks)

$$
\begin{array}{ll}
Q=C V & \leftarrow \mathbf{1} \text { mark } \\
C=\frac{Q}{V}=\frac{4.2 \times 10^{-4}}{12} & \leftarrow \mathbf{1} \text { mark } \\
C=3.5 \times 10^{-5} \mathrm{~F} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

2. A transistor circuit has a current gain of 430 . When the base current is $6.00 \mu \mathrm{~A}$ the collector current is 1.15 mA . What is the collector current when the base current is $7.50 \mu \mathrm{~A}$?

$$
\begin{aligned}
\beta & =\frac{\Delta I_{C}}{\Delta I_{B}} & & \leftarrow \mathbf{1} \text { mark } \\
\Delta I_{C} & =\beta \Delta I_{B} & & \\
& =(430)(7.50-6.00) \times 10^{-6} & & \\
\Delta I_{C} & =6.45 \times 10^{-4} \mathrm{~A} & & \\
I_{C}-1.15 \times 10^{-3} & =6.45 \times 10^{-4} & & \leftarrow \mathbf{1} \mathbf{~ m a r k s}
\end{aligned}
$$

3. What is the current in the circuit shown below?

$$
\begin{aligned}
X_{L} & =2 \pi f L \\
& =2 \pi(450)\left(3.0 \times 10^{-2}\right) \\
& =85 \Omega
\end{aligned}
$$

$$
\leftarrow \mathbf{1} \text { mark }
$$

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi f C}=\frac{1}{2 \pi(450)\left(6.0 \times 10^{-6}\right)} \\
& =59 \Omega
\end{aligned}
$$

$$
\leftarrow \mathbf{1} \text { mark }
$$

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

$$
=\sqrt{25^{2}+(85-59)^{2}}
$$

$$
Z=36 \Omega \quad \leftarrow \mathbf{2} \text { marks }
$$

$$
I=\frac{V}{Z}=\frac{72}{36}
$$

$$
I=2.0 \mathrm{~A}
$$

$\leftarrow 1$ mark

END OF KEY

