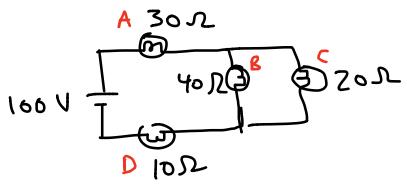

Four bulbs are connected in the circuit below to a 100 V power source.


- a) Determine the power dissipated by each bulb.
- b) Another bulb is connected parallel to bulbs B and C. How does the brightness of each bulb change?

Bulbs A and D become
___ brighter ___ dimmer ___ remain the same
Bulbs B and C become
___ brighter ___ dimmer ___ remain the same
Explain.

Determine the terminal voltage of the battery for each circuit.

Four bulbs are connected in the circuit below to a 100 V power source.

- a) Determine the power dissipated by each bulb.
- b) Another bulb is connected parallel to bulbs B and C. How does the brightness of each bulb change?

Bulbs A and D become

___ brighter ___ dimmer ___ remain the same

Bulbs B and C become

___ brighter ___ dimmer ___ remain the same Explain.

a)
$$\frac{1}{R_{eq}} = \frac{1}{R_B} + \frac{1}{R_c}$$

$$R_{eq} = \left(\frac{1}{20} + \frac{1}{40}\right)^{-1} = 13.3 \text{ }\Omega$$

$$R_1 = R_A + R_{eq} + R_D$$

= 30 + 13.3 + 10 = 53.3 Ω

$$I_T = \frac{V_T}{R_T} = \frac{166}{53.3} = 1.875 A$$

$$V_{eq} = J_{eq}R_{eq}$$

$$= (1.875)(13.\overline{3}) = 25 V$$

$$V_{eq} = V_{g} = V_{c}$$

$$P_{A} = I_{A}^{2}R_{A} = (1.875)^{2}(30) = 105 W$$

$$P_{B} = \frac{V_{B}^{2}}{R_{B}} = \frac{25^{2}}{40} = 15.6 W$$

$$P_{C} = \frac{V_{C}^{2}}{R_{C}} = \frac{25^{2}}{20} = 31.3 W$$

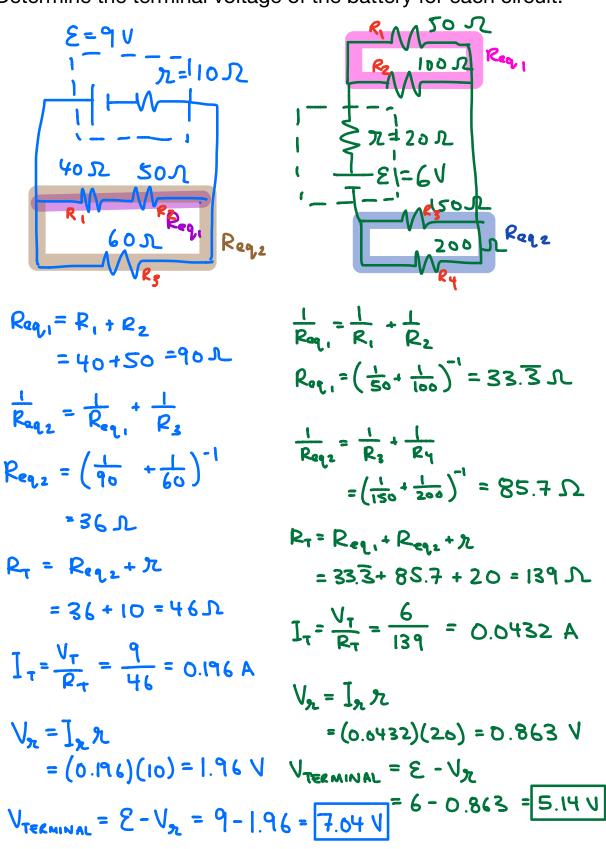
$$P_{D} = J_{O}^{2}R_{D} = (1.875)^{2}(10) = 35.2 W$$

b) WHEN ANOTHER RESISTOR IS ADDED IN PARALLEL TO BULBS B AND C, THE TOTAL RESISTANCE OF THE CIRCUIT DECREASES. BY OHM'S LAW, THE DECREASE IN RESISTANCE RESULTS IN AN INCREASE IN TOTAL CURRENT. AS THIS TOTAL CURRENT PASSES THROUGH BULBS A AND D, THE POWER AND THEREFORE THE BRIGHTNESS INCREASE $(P=1^2R, P\sim 1^2)$.

AS MORE CURRENT PASSES THROUGH BULBS
A AND D, BY OHM'S LAW, THE POTENTIAL
VOLTAGE ACROSS THE BULBS INCREASES.

SINCE V_T HAS NOT CHANGED, BY

KIRCHHOFF'S LOOP RULE, V_B AND V_C MUST


DECREASE. THE POWER AND THEREFORE THE

BRIGHTNESS DECREASE $(P = \frac{V^2}{R}, P \approx V^2)$.

ALTERNATE EXPLANATION FOR BULBS B AND C:
AS A BULB IS ADDED IN PARALLEL TO
BULBS B AND C, THERE IS A NEW PATH
FOR CURRENT TO FLOW. THIS REDUCES THE
CURRENT TO B AND C. THE POWER AND
THEREFORE THE BRIGHTNESS DECREASE

(P=12R, P~12).

Determine the terminal voltage of the battery for each circuit.

