Inverse Functions

Inverse	functions	are a specia	l class of	functions that	each other

Example: f(x) = 2x + 1 and $g(x) = \frac{x-1}{2}$ are examples of inverse functions

Mapping:

Notice that the ______ of the first function f(x) becomes the _____ for the second function g(x). The function g(x) undoes what f(x) does. The ordered pairs of g(x) can be found by switching the coordinates in each order pair of f(x).

Notation:

We may check if two functions are inverses of each other by composition.

Two functions f and g are inverses of each other if and only if

- 1) f(g(x)) = x, for every value of x in the domain of g and
- 2) g(f(x)) = x, for every value of x in the domain of f

To find the inverse of a function f(x) by algebra, follow the steps:

- 1) Verify that f is _____ (if not, the inverse is not a function)
- 2) Replace _____ with ____
- 3) Interchange ___and ____
- 4) Solve the new equation for _____
- 5) Replace the new y with _____

Example #1

Find the inverse of the following functions:

a)
$$y = 4x - 5$$

b)
$$f(x) = 2x^2 - 1$$

b)
$$f(x) = \frac{2x-1}{4-3x}$$

d)
$$f(x) = \sqrt{x-1}$$

To find the inverse of a function by graphing, follow the steps:

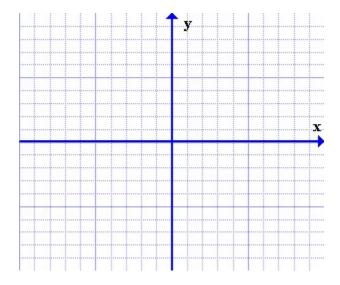
- 1) Graph the function _____
- 2) Take a few points and interchange their coordinates _____
- 3) Plot the new points. This is the graph of the inverse function.

The graphs of _____ and ____ are symmetric about the line____

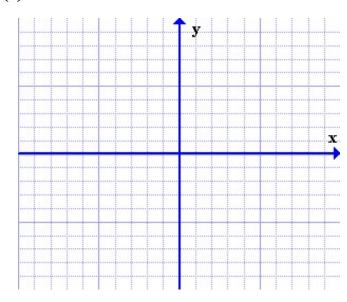
Example #2.

Find the inverse of f(x) by graphing.

a)
$$f(x) = 2x + 1$$



b)
$$f(x) = x^2 - 4$$



c) Restrict the domain of the function $y = -2(x+1)^2 - 3$ such that the inverse is a function.