Transformations. Part 1: Vertical and Horizontal Translations
Graph: $y=x^{2}, y=x^{2}+1$ and $y=x^{2}-1$ on the same grid

Graph: $y=x^{2}, y=(x+1)^{2}$ and $y=(x-1)^{2}$ on the same grid

Rule:

1) Given the function $y=f(x)$, write the equation of the transformed function after each of the following translations:
a) Vertical translation of 3 units down
b) Horizontal translation of 4 units to the right
c) A horizontal translation of 2 units to the left and a vertical translation of 5 units up.
2) Describe how the graph of $\mathrm{y}=f(x-4)+2$ can be obtained from the graph of $y=f(x)$.
3) Find the coordinates of the second point
a) A horizontal translation of 2 units to the left $(3,-5) \rightarrow($,
b) A horizontal translation 3 units to the right and a vertical translation 2 units down

$$
(-4,2) \rightarrow(, \quad)
$$

c) Describe the translations that transform point $(-6,-3)$ into $(5,-2)$
4) Graph $y=f(x)+2$

5) Graph $y-3=f(x-2)$

8) Describe how the graph $y+2=f(x-1)-7$ relates to the graph of $y=f(x)$
9) The function $y=f(x)$ is transformed to $y=f(x+2)+3$. If the point $(2,-1)$ lies on the graph of $y=f(x)$, determine the point that must lie on the transformed graph.
10) The function $y=f(x)$ is transformed to $y-3=f(x-2)$. If the point $(-3,4)$ lies on the graph of $y-3=f(x-2)$, determine the point that must lie on the graph of $\mathrm{y}=f(x)$.
11) What happens to the graph of the function $y=f(x)$ if you replace x with $x+4$ and y with $y-5$?
12) Describe how the graph of the second function compares to the graph of the first function:
a) $y=x^{3}$
b) $y=2^{x}$
c) $y=\frac{1}{x^{2}+1}$
$y=x^{3}-1$
$y=2^{x+1}-3$
$y-2=\frac{1}{(x-3)^{2}+1}$
13) Write the equation of the image of $y=\frac{1}{\sqrt{x}}$ after a horizontal translation of 3 units to the left and a vertical translation of 2 units up.
14) The function $F(x)=\sqrt{x}+3$ is transformed by a translation of 3 units down and 4 units to the left. The transformed function passes through the point $(15, y)$. Determine the value of y.
15) What vertical translation would be applied to $y=x^{2}$ so that the translation image passes through $(3,5)$?
16) What horizontal translation would be applied to $y=\frac{1}{x-3}$ so that the translation image passes through ($1, \frac{1}{2}$)?

