1.3 Operations with Functions. Composition.

Must know from Math 10:

If	f(x) = 2x + 1	If ₂	$g(x) = -x^2$	$x^{2} + x - 1$

Determine:

f(a) =

f(3x) =

 $f(x^2 - 1) =$

It is possible to combine functions by a method called **composition**.

Example #1: If f(x) = x - 1 and g(x) = x + 2, determine the composition of f and g at point x = 3.

Visual Representation:

Example #2: If $f(x) = x^2 - 1$ and g(x) = x - 2, determine the composition of f and g at point x = -1.

Visual Representation:

Algebra:

Algebra:

Determine:

g(a - 1) =

g(a) =

For two functions f and g both defined on the real numbers, the composition is defined as

The _____ of function f must include the range of g.

Visual representation:

- 1) Evaluate the ______ function first. Replace g(x) with the formula for g.
- 2) Use the _____ from the inner function as the input for the _____ function f(x).
- 3) Write the answer in simplest form.
- 4) Remember!

It is possible to do the composite of a function with itself: fof.

Do not confuse composition of function with multiplication! _____does not mean _____.

Composition is not commutative:_____

Composition is used anytime a change in one quantity produces a change in another, which, in turn, produces a change in a third quantity. <u>Example</u>: The cost of travelling by car depends on the amount of gasoline used, and the amount of gasoline depends on the number of kilometers driven.

Problem #1

The function f(d) = 0.73d converts Canadian dollars to Euros. The function j(e) = 128e converts Euros to Japanese yen. Write a function that converts Can dollars to Japanese yen.

Problem #2

Consider $f(x) = \sqrt{x-2}$ and $g(x) = x^2$

Determine the following and find the domain, where necessary:

- **a)** (fog)(2)
- **b)** (fog)(4)
- **c)** (gof)(3)
- d) (fog)(x)
- **e)** (gof)(x)
- **f)** (*gog*)(*x*)

Problem #3

Given f(x) = x + 1 and $g(x) = \frac{1}{x-1}$, determine the following and find the domain: a) $(f \circ g)(x)$

b) (gof)(x)

c) (gog)(x)

When **decomposing** a composite function, we ask what function is on the inside and what function is on the outside. There may be multiple answers to the question.

Problem #4

Find two functions, f and g, both containing the variable x, to make the following true.

a) $(fog)(x) = 3x$	b) $(gof)(x) = ($	$(x-2)^3 - 1$
--------------------	-------------------	---------------

c) $(fog)(x) = \sqrt{x+3}$

d) $(fog)(x) = x^2 - 2x + 2$

Problem #5

Sketch the graph of (fog)(x) if $g(x) = \sqrt{x+3}$ and $f(x) = x^2 + 1$.

