1.3 Operations with Functions. Composition.

Must know from Math 10:

If $f(x)=2 x+1$

$$
\text { If } g(x)=-x^{2}+x-1
$$

Determine:
Determine:
$f(a)=$
$g(a)=$
$f(3 x)=$ $g(a-1)=$
$f\left(x^{2}-1\right)=$
It is possible to combine functions by a method called composition.
Example \#1: If $f(x)=x-1$ and $g(x)=x+2$, determine the composition of f and g at point $x=3$.

Visual Representation:
Algebra:

Example \#2: If $f(x)=x^{2}-1$ and $g(x)=x-2$, determine the composition of f and g at point $x=-1$.

Visual Representation: Algebra:

For two functions f and g both defined on the real numbers, the composition is defined as

The \qquad of function f must include the range of g.

Visual representation:

1) Evaluate the \qquad function first. Replace $g(x)$ with the formula for g.
2) Use the \qquad from the inner function as the input for the \qquad function $f(x)$.
3) Write the answer in simplest form.
4) Remember!

It is possible to do the composite of a function with itself: fof .
Do not confuse composition of function with multiplication! \qquad does not mean \qquad .

Composition is not commutative: \qquad
Composition is used anytime a change in one quantity produces a change in another, which, in turn, produces a change in a third quantity. Example: The cost of travelling by car depends on the amount of gasoline used, and the amount of gasoline depends on the number of kilometers driven.

Problem \#1

The function $f(d)=0.73 d$ converts Canadian dollars to Euros. The function $j(e)=128 e$ converts Euros to Japanese yen. Write a function that converts Can dollars to Japanese yen.

Problem \#2

Consider $f(x)=\sqrt{x-2}$ and $g(x)=x^{2}$
Determine the following and find the domain, where necessary:
a) $(f o g)(2)$
b) $(f o g)(4)$
c) $(g o f)(3)$
d) $(f \circ g)(x)$
e) $(g \circ f)(x)$
f) $(\operatorname{gog})(x)$

Problem \#3

Given $f(x)=x+1$ and $g(x)=\frac{1}{x-1}$, determine the following and find the domain:
a) $(f \circ g)(x)$
b) $(g \circ f)(x)$
c) $(\operatorname{gog})(x)$

When decomposing a composite function, we ask what function is on the inside and what function is on the outside. There may be multiple answers to the question.

Problem \#4

Find two functions, f and g, both containing the variable x, to make the following true.
a) $(f o g)(x)=3 x$
b) $(g \circ f)(x)=(\sqrt{x}-2)^{3}-1$
c) $(f \circ g)(x)=\sqrt{x+3}$
d) $(f o g)(x)=x^{2}-2 x+2$

Problem \#5
Sketch the graph of $(f \circ g)(x)$ if $g(x)=\sqrt{x+3}$ and $f(x)=x^{2}+1$.

