PMATH 12 - MIDTERM - PRACTICE QUESTIONS

Multiple Choice

CIRCLE the choice that best completes the statement or answers the question.

1. Divide: $(-4x^2 + 22x + 12) \div (x - 6)$

A. 4x + 6

B. 4x - 48

C. -4x + 12

D. -4x-2

2. What is the remainder when $x^3 + 4 - 11x + 3x^2$ is divided by 6 + x?

A. 70

B. −62

C. −38

D. 46

3. Divide $-3x^3 - 2x^2 + 4x + 3$ by x + 3. Write the division statement.

A. $-3x^3 - 2x^2 + 4x + 3 = (x+3)(-3x^2 - 11x + 25)$

B. $-3x^3 - 2x^2 + 4x + 3 = (x+3)(-3x^2 - 11x + 25) - 48$

C. $-3x^3 - 2x^2 + 4x + 3 = (x+3)(-3x^2 + 7x - 17)$

D. $-3x^3 - 2x^2 + 4x + 3 = (x+3)(-3x^2 + 7x - 17) + 54$

4. For the polynomial $P(x) = -3x^2 - 4x - 5$, what is the value of P(-2)?

A. -25

B. 15

C. -21

D. -9

5. Which two binomials are factors of $x^4 + 8x^3 + 7x^2 - 40x - 60$?

A. x+2 and x-6

B. x-2 and x-6

C. x-2 and x+6

D. x + 2 and x + 6

6. Use graphing technology. Graph the polynomial function $f(x) = x^3 - 7x^2 + 11x - 5$. Which characteristics apply to the graph?

A. Number of x-intercepts: 3

Number of hills: 1

Number of valleys: 1

B. Number of x-intercepts: 2

Number of hills: 2

Number of valleys: 1

C. Number of x-intercepts: 2

Number of hills: 1

Number of valleys: 1

D. Number of x-intercepts: 1

Number of hills: 1

Number of valleys: 2

- 7. Determine the zeros of the polynomial function $f(x) = (x+2)^4(x-5)$. State the multiplicity of each zero.
 - The zero 4 has multiplicity 2; the zero 1 has multiplicity -5.
 - В. The zero 4 has multiplicity -2; the zero 1 has multiplicity 5.
 - C. The zero -2 has multiplicity 4; the zero 5 has multiplicity 1.
 - **D.** The zero 2 has multiplicity 4; the zero –5 has multiplicity 1.

- 8. The graph of a polynomial function of degree 4 is shown. Which statements are true?
 - i) The function has an even degree
 - ii) The function has a zero of multiplicity 2.
 - iii) The equation of the function has a negative leading coefficient.
 - iv) The y-intercept is positive.

- A. i, ii, iii
- B. i, iii, iv
- C. ii, iii, iv
- **D.** i, ii, iv
- 9. Use a graphing calculator to graph the function $V(x) = x^3 7x^2 + 10x$. Determine the coordinates of the local maximum point to the nearest tenth.
 - **A.** (0.9, 8.2)
- **B.** (3.8, 4.1)
- **C.** (3.8, 8.2)
- **D.** (0.9, 4.1)
- 10. Use graphing technology to solve: $\sqrt{3x-1} = -x+5$ Give the solution to the nearest tenth.
 - **A.** x = 10.5
- **B.** x = 10.8
- C. $x \doteq 2.2$
- **D.** x = 2.5

11. The graph of which function below has a hole?

A.
$$y = \frac{x+2}{x^2+2}$$

C.
$$y = \frac{x^2}{x-4}$$

B.
$$y = \frac{x^2 - 9}{x + 3}$$

D.
$$y = \frac{x^2 - 3}{x^2 - 2}$$

12. The graph of which function below has a horizontal asymptote?

A.
$$y = \frac{x^2 - 7x + 12}{x + 7}$$
 B. $y = \frac{x^2 - 3}{x + 7}$ **C.** $y = \frac{x^2 + 3}{x^2 - 2}$ **D.** $y = \frac{x^2}{x + 3}$

B.
$$y = \frac{x^2 - 3}{x + 7}$$

C.
$$y = \frac{x^2 + 3}{x^2 - 2}$$

D.
$$y = \frac{x^2}{x+3}$$

13. What is the equation of the vertical asymptote of the graph of this function?

$$y = \frac{x+4}{x^2 + 10x + 25}$$

A.
$$x = -5$$

C.
$$x = -4$$

B.
$$x = 0$$

D. The graph has no vertical asymptote.

14. For the graph of y = f(x) shown below, which graph best represents $y = \sqrt{f(x)}$?

A.

C.

B.

D.

15. For the graph of y = f(x) shown below, which graph best represents $y = \sqrt{f(x)}$?

A.

C.

B.

D.

16. For the graph of this rational function, state the domain and write the equations of any asymptotes.

A. domain: $x \in \mathbb{R}$;

horizontal asymptote: y = 0

- C. domain: $x \neq 0$; vertical asymptote: x = 0
- **B.** domain: $x \neq -3$; horizontal asymptote: y = 0
- **D.** domain: $x \in \mathbb{R}$; no vertical or horizontal asymptotes
- 17. For the graph of this rational function, state the domain and write the equations of any asymptotes and the coordinates of any hole.

- A. domain: $x \ne 1$ and $x \ne -2$; vertical asymptotes: x = 1, x = -2; horizontal asymptote: y = 1
- **B.** domain: $x \ne 1$ and $x \ne -2$; hole: (-2, -7)vertical asymptote: x = 1;

vertical asymptote: x = 1; horizontal asymptote: y = 0

- C. domain: $x \neq 0$; hole: (0, -7)vertical asymptote: x = 0; horizontal asymptote: y = 0
- **D.** domain: $x \ne 1$ and $x \ne -2$; vertical asymptotes: x = 1, x = -2; horizontal asymptote: y = 0

18. For the graph of this rational function, identify the equations of any asymptotes and the coordinates of any

$$y = \frac{x^2 + 5x + 6}{x - 3}$$

- A. The graph has a hole at (3,30).
- **B.** The graph has a vertical asymptote at x = 3, and an oblique asymptote at y = x 3.
- C. The graph has a vertical asymptote at x = 3, and an oblique asymptote at y = x + 8.
- **D.** The graph has a horizontal asymptote at y = 0.
- 19. What is the solution of this radical equation, to the nearest tenth if necessary?

$$\frac{4}{x-1} = -8$$

- **A.** x = 1.5
- **B.** x = 0.5

- C. x = -1.5D. x = -0.5
- 20. State the domain of this function.

$$y = \frac{x^2 + 7x + 10}{-2 - x}$$

- A. $x \neq \pm 2$

- C. $x \neq -2, x \neq -5$
- 21. Which function below describes this graph?

- **B.** $y = \frac{-x^2 x + 6}{x + 3}$

- $C. \quad y = \frac{-x^2 + 6x + 1}{x + 3}$
- **D.** $y = \frac{x+3}{-x^2 x + 6}$

22. Which function below describes this graph?

A.
$$y = \frac{-3x^2 - 5}{x^2 - 25}$$

B.
$$y = \frac{2x^2 - 5}{x^2 - 25}$$

$$C. \quad y = \frac{-3x^2 - 5}{x^2 + 5}$$

D.
$$y = \frac{-3x^2 - 5}{x^2}$$

23. The graph of $y = \sqrt{x} + k$ is the image of the graph of $y = \sqrt{x}$ after a single translation. What is the value of

A. 5

- 24. The graph of y = f(x) is translated 4 units down. What is the equation of the translation image in terms of the function f?
 - $\mathbf{A.} \quad y = f(x+4)$

C. y-4 = f(x) **D.** y = f(x-4)

B. v + 4 = f(x)

25. The graph of y = f(x) is the image of the graph of y = -|x| after a horizontal and vertical translation. What is an equation of the image graph?

- **A.** y-3=-|x|
- **B.** y-3=-|x-2|
- **C.** y-3=|x+2| **D.** y-2=-|x-3|
- 26. Here is the graph of y = f(x). What are the domain and range of its image after a reflection in the x-axis?

domain: $-10 \le x \le -2$

range: $-8 \le y \le -2$

B. domain: $2 \le x \le 10$

range: $2 \le y \le 8$

C. domain: $2 \le x \le 10$

range: $-8 \le y \le -2$

D. domain: $-10 \le x \le -2$

range: $2 \le y \le 8$

27. Here is the graph of y = f(x). What are the domain and range of y = -f(x)?

- **A.** domain: $x \in \mathbb{R}$ range: $y \le -4$
- **B.** domain: $x \in \mathbb{R}$ range: $y \le 4$
- C. domain: $x \le 6$ range: $y \ge 4$
- **D.** domain: $x \in \mathbb{R}$ range: $y \in \mathbb{R}$
- 28. The graph of y = f(x) is stretched vertically by a factor of 6. What is the equation of the image graph in terms of the function f?

- **A.** y = 6f(x) **B.** $y = \frac{1}{6}f(x)$ **C.** y = f(6x) **D.** $y = f(\frac{1}{6}x)$
- 29. The point A (16,64) lies on the graph of $y = \sqrt{x^3}$. What are the coordinates of its image A' on the graph of $y = \frac{1}{4} \sqrt{(2x)^3} ?$
 - A. (8,16)

C. (4, 16)

B. (8,32)

- D. Not enough information is given.
- 30. The graph of y = f(x) is horizontally compressed by a factor of $\frac{1}{3}$, vertically compressed by a factor of $\frac{1}{2}$, and reflected in the y-axis. What is an equation of the image graph in terms of the function f?
 - **A.** $y = \frac{1}{2}f(-3x)$

C. $y - \frac{1}{2} = f(x - 3)$

B. $y-3 = f(x-\frac{1}{2})$

D. $y = -3f(\frac{1}{2}x)$

31. For the graph of y = f(x) shown below, which graph represents y = f(-2x)?

A.

C.

B.

D.

32. Which statement below describes how the graph of y = f(x) has been transformed to get the graph of $y = f(-\frac{1}{3}(x-2))$?

It is the image of the graph of y = f(x) after:

- A. a vertical compression by a factor of $\frac{1}{3}$, a reflection in both axes, and a translation of 2 units right.
- **B.** a vertical stretch by a factor of 3, a reflection in the y-axis, and a translation of 2 units down.
- C. a horizontal stretch by a factor of 3, a reflection in the y-axis, and a translation of 2 units right.
- **D.** a horizontal compression by a factor of $\frac{1}{3}$, a reflection in the y-axis, and a translation of 2 units right.
- 33. Here is the graph of y = f(x). What are the domain and range of its inverse?

- A. Domain: $-5 \le x \le 4$
 - Range: $-5 \le y \le -3$
- **B.** Domain: $3 \le x \le 5$
 - Range: $-5 \le y \le 4$

- C. Domain: $-5 \le x \le 4$
 - Range: $3 \le v \le 5$
- **D.** Domain: $3 \le x \le 5$
 - Range: $-4 \le v \le 5$
- 34. Determine an equation of the inverse of the function y = -6x 5.
 - **A.** $y = \frac{x-6}{-5}$

C. y = -6x + 5

B. $y = \frac{x-5}{-6}$

- **D.** $y = \frac{x+5}{-6}$
- 35. The point A(-5,-3) lies on the graph of y = f(x). What are the coordinates of its image A' on the graph of $y = f^{-1}(x)$?
 - **A.** (3,5)

C. (-3,-5)

B. (5,3)

D. (-5, -3)

36. Use the graphs of y = f(x) and y = g(x). What are the domain and range of y = f(x) - g(x)?

A. Domain: $x \in \mathbb{R}$

Range: $y \le -2$

B. Domain: $x \le -2$

Range: $y \le 4$

C. Domain: $x \ge -2$

Range: $y \in \mathbb{R}$

D. Domain: $x \ge -2$

Range: $y \le 4$

37. Given f(x) = x - 1 and $g(x) = 3x^2 + 2$, what is an explicit equation for $p(x) = f(x) \cdot g(x)$?

A.
$$p(x) = 4x^3 + 3x^2 + 2x - 2$$

B.
$$p(x) = 3x^2 + x + 1$$

C.
$$p(x) = 3x^2 - x - 2$$

D.
$$p(x) = 3x^3 - 3x^2 + 2x - 2$$

38. Given f(x) = x + 2 and $g(x) = x^2 - 25$, what is the domain of $q(x) = \frac{f(x)}{g(x)}$?

A.
$$x \neq 25$$

C. $x \neq -2$

B.
$$x \ne 5, x \ne -5$$

D. $x \in \mathbb{R}$

39. Given $h(x) = 5x^2 + 2x - 3$, which pair of equations below are possible equations for f(x) and g(x) so that h(x) = f(x) - g(x)?

A.
$$f(x) = 5x^2$$

$$g(x) = 2x - 3$$

C.
$$f(x) = 4x^2$$

$$g(x) = -x^2 - 2x - 3$$

B.
$$f(x) = 4x^2$$

$$g(x) = x^2 + 2x - 3$$

D.
$$f(x) = 5x^2$$

$$g(x) = -2x + 3$$

- **40.** Given f(x) = |x 5| and $g(x) = \frac{1}{x}$, what is the domain and range of h(x) = f(x) + g(x)?
 - A. Domain: $x \neq 0$ Range: $y \in \mathbb{R}$
 - **B.** Domain: $x \ge 5$
 - Range: $y \le 5$

- C. Domain: $x \neq 0$
 - Range: $y \le 5$
- **D.** Domain: $x \neq 5$
 - Range: $y \in \mathbb{R}$
- **41.** Given the graphs of y = f(x) and y = g(x), what is the value of f(g(3))?

- **A.** 4
- **B.** −2
- **C.** 2
- **D**. -4
- **42.** Given $f(x) = \sqrt{4-x}$ and g(x) = 3-5x, what is an explicit equation for f(g(x))?
 - **A.** $f(g(x)) = 3 \sqrt{4 5x}$
 - **B.** $f(g(x)) = 1 \sqrt{4 5x}$
 - $\mathbf{C.} \quad f(g(x)) = \sqrt{1 5x}$
 - $\mathbf{D.} \quad f(g(x)) = \sqrt{5x+1}$

43. Use these tables. What is the value of f(f(0))?

x	f(x)
-3	18
-2	11
1	6
0	3
1	2
2	3
3	6

- **A.** –2
- **B.** 6
- **C.** 2
- **D.** 0
- **44.** The function h(x) = g(f(x)) is the composite of f(x) = 2 x and $g(x) = \frac{1}{\sqrt{x}}$.

What is the domain of h(x)?

- **A.** -2 < x < 0
- **B.** x < 2

- C. x < -2 or x > 0
- **D.** x > 0
- 45. Given $f(x) = \sqrt{2-x}$ and $g(x) = x^2 + 6x 3$, which is an explicit equation for the composite function h(x) = g(f(x)), and what is its domain?
 - **A.** $h(x) = \sqrt{-x^2 6x + 5}$
 - $x \ge 0$ **B.** h(x) = -1 - x
 - $x \in \mathbb{R}$
 - $\mathbf{C.} \quad h(x) = \sqrt{-1-x}$
 - $x \le -1$
 - **D.** $h(x) = -1 x + 6\sqrt{2 x}$ $x \le 2$