PMATH 12 - FINAL REVIEW QUESTIONS

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. *Divide: $(-4x^2 + 22x + 12) \div (x - 6)$

A. 4x + 6

B. 4x - 48

C. -4x + 12

D. -4x-2

2. *What is the remainder when $x^3 + 4 - 11x + 3x^2$ is divided by 6 + x?

A. 70

B. -62

 $C_{2} = -38$

D. 46

3. *For the polynomial $P(x) = -3x^2 - 4x - 5$, what is the value of P(-2)?

A. −25

B. 15

C. -21

D. -9

4. Which two binomials are factors of $x^4 + 8x^3 + 7x^2 - 40x - 60$?

A. x+2 and x-6

C. x-2 and x+6

B. x-2 and x-6

D. x+2 and x+6

5. Use graphing technology. Graph the polynomial function $f(x) = x^3 - 7x^2 + 11x - 5$. Which characteristics apply to the graph?

A. Number of x-intercepts: 3

Number of hills: 1

Number of valleys: 1

B. Number of x-intercepts: 2

Number of hills: 2

Number of valleys: 1

C. Number of x-intercepts: 2

Number of hills: 1

Number of valleys: 1


D. Number of x-intercepts: 1

Number of hills: 1

Number of valleys: 2

*The graph of a polynomial function of degree 4 is shown. Which statements are true?

- i) The function has an even degree.
- ii) The function has a zero of multiplicity 2.
- iii) The equation of the function has a negative leading coefficient.
- iv) The y-intercept is positive.

A. i, ii, iii

B. i, iii, iv

C. ii, iii, iv

D. i, ii, iv

- 7. *Determine the zeros of the polynomial function $f(x) = (x+2)^4(x-5)$. State the multiplicity of each zero.
 - The zero 4 has multiplicity 2; the zero 1 has multiplicity -5.
 - The zero 4 has multiplicity -2; the zero 1 has multiplicity 5.
 - The zero -2 has multiplicity 4; the zero 5 has multiplicity 1.
 - The zero 2 has multiplicity 4; the zero -5 has multiplicity 1.
- 8. Use graphing technology to solve: $\sqrt{3x-1} = -x+5$ Give the solution to the nearest tenth.
 - **A.** x = 10.5
- **B.** x = 10.8
- **C.** x = 2.2
- **D.** x = 2.5
- 9. *The graph of which function below has a hole?

- **A.** $y = \frac{x+2}{r^2+2}$ **B.** $y = \frac{x^2-9}{x+3}$ **C.** $y = \frac{x^2}{x-4}$ **D.** $y = \frac{x^2-3}{r^2-2}$
- 10. *What is the equation of the vertical asymptote of the graph of this function?

$$y = \frac{x+4}{x^2 + 10x + 25}$$

A. x = -5

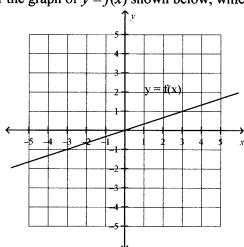
C. x = -4

B. x = 0

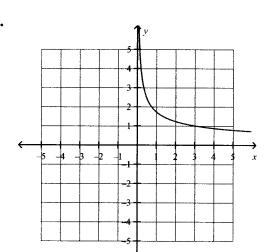
- **D.** The graph has no vertical asymptote.
- 11. What is the solution of this rational equation, to the nearest tenth if necessary?

$$\frac{4}{x-1} = -8$$

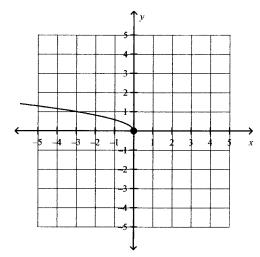
- **A.** x = 1.5
- **B.** x = 0.5
- **C.** x = -1.5 **D.** x = -0.5

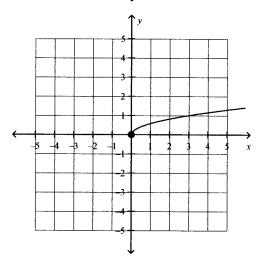

12. *State the domain of this function.

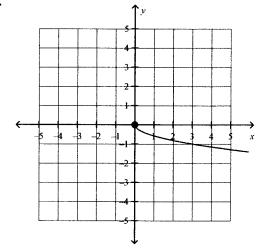
$$y = \frac{x^2 + 7x + 10}{-2 - x}$$


- A. $x \neq \pm 2$
- **B.** $x \neq -2$ **C.** $x \neq -2, x \neq -5$ **D.** $x \in \mathbb{R}$
- 13. *The graph of y = f(x) is translated 4 units down. What is the equation of the translation image in terms of the function f?

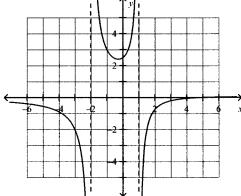
- **A.** y = f(x+4) **B.** y+4 = f(x) **C.** y-4 = f(x) **D.** y = f(x-4)


14. *For the graph of y = f(x) shown below, which graph best represents $y = \sqrt{f(x)}$?

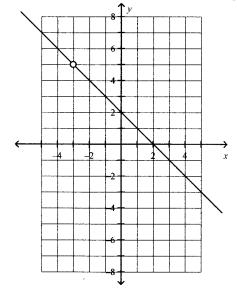

A.


C.

B.



D.

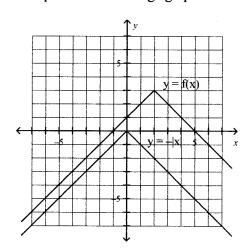


15. *For the graph of this rational function, state the domain and write the equations of any asymptotes and the coordinates of any hole.

- A. domain: $x \ne 1$ and $x \ne -2$; vertical asymptotes: x = 1, x = -2; horizontal asymptote: y = 1
- **B.** domain: $x \ne 1$ and $x \ne -2$; hole: (-2, -7)vertical asymptote: x = 1; horizontal asymptote: y = 0
- C. domain: $x \neq 0$; hole: (0,-7)vertical asymptote: x = 0; horizontal asymptote: y = 0
- **D.** domain: $x \ne 1$ and $x \ne -2$; vertical asymptotes: x = 1, x = -2; horizontal asymptote: y = 0
- 16. *Which function below describes this graph?

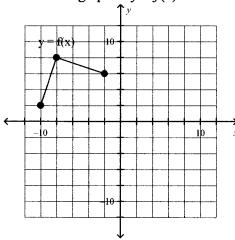
A.
$$y = \frac{-x^2 - x + 6}{x - 3}$$

B.
$$y = \frac{-x^2 - x + 6}{x + 3}$$


$$C. \quad y = \frac{-x^2 + 6x + 1}{x + 3}$$

D.
$$y = \frac{x+3}{-x^2-x+6}$$

17. *The graph of $y = \sqrt{x} + k$ is the image of the graph of $y = \sqrt{x}$ after a single translation. What is the value of *k*?



- **A.** 5
- **B.** -4
- **C.** 4
- **D.** −5
- 18. *The graph of y = f(x) is the image of the graph of y = -|x| after a horizontal and vertical translation. What is an equation of the image graph?

- **A.** y-3=-|x| **B.** y-3=-|x-2| **C.** y-3=|x+2| **D.** y-2=-|x-3|

19. *Here is the graph of y = f(x). What are the domain and range of its image after a reflection in the x-axis?

A. domain:

$$-10 \le x \le -2$$

range:

$$-8 \le y \le -2$$

B. domain:

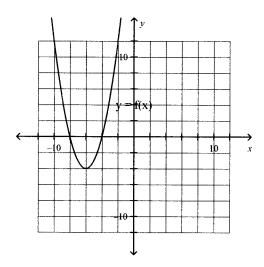
$$2 \le x \le 10$$

range: $2 \le y \le 8$

C. domain:

$$2 \le x \le 10$$

range:


$$-8 \le y \le -2$$

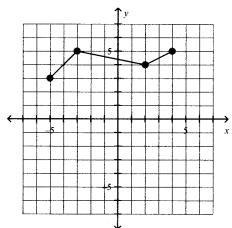
D. domain:

$$-10 \le x \le -2$$

range: $2 \le y \le 8$

20. *Here is the graph of y = f(x). What are the domain and range of y = -f(x)?

- **A.** domain: $x \in \mathbb{R}$ range: $y \le -4$
- **B.** domain: $x \in \mathbb{R}$ range: $y \le 4$
- C. domain: $x \le 6$ range: $y \ge 4$
- **D.** domain: $x \in \mathbb{R}$ range: $y \in \mathbb{R}$
- 21. *The graph of y = f(x) is stretched vertically by a factor of 6. What is the equation of the image graph in terms of the function f?


- **A.** y = 6f(x) **B.** $y = \frac{1}{6}f(x)$ **C.** y = f(6x) **D.** $y = f(\frac{1}{6}x)$

- 22. *The point A (16,64) lies on the graph of $y = \sqrt{x^3}$. What are the coordinates of its image A' on the graph of $y = \frac{1}{4} \sqrt{(2x)^3}$?
 - **A.** (8,16)
- **B.** (8,32)
- **C.** (4,16)
- D. Not enough information is given.
- 23. *The graph of y = f(x) is horizontally compressed by a factor of $\frac{1}{3}$, vertically compressed by a factor of $\frac{1}{2}$, and reflected in the y-axis. What is an equation of the image graph in terms of the function f?
- **A.** $y = \frac{1}{2}f(-3x)$ **B.** $y 3 = f(x \frac{1}{2})$ **C.** $y \frac{1}{2} = f(x 3)$ **D.** $y = -3f(\frac{1}{2}x)$
- 24. *Which statement below describes how the graph of y = f(x) has been transformed to get the graph of $y = f(-\frac{1}{3}(x-2))$? It is the image of the graph of y = f(x) after:
 - A. a vertical compression by a factor of $\frac{1}{3}$, a reflection in both axes, and a translation of 2 units right.
 - a vertical stretch by a factor of 3, a reflection in the y-axis, and a translation of 2 units
 - C. a horizontal stretch by a factor of 3, a reflection in the y-axis, and a translation of 2 units
 - **D.** a horizontal compression by a factor of $\frac{1}{3}$, a reflection in the y-axis, and a translation of 2 units right.
- **25.** *Determine an equation of the inverse of the function y = -6x 5.
 - **A.** $y = \frac{x-6}{-5}$ **B.** $y = \frac{x-5}{-6}$ **C.** y = -6x+5 **D.** $y = \frac{x+5}{-6}$

- **26.** *Given f(x) = x 1 and $g(x) = 3x^2 + 2$, what is an explicit equation for $p(x) = f(x) \cdot g(x)$?
 - **A.** $p(x) = 4x^3 + 3x^2 + 2x 2$
- C. $p(x) = 3x^2 x 2$
- **B.** $p(x) = 3x^2 + x + 1$
- **D.** $p(x) = 3x^3 3x^2 + 2x 2$
- 27. *Given f(x) = x + 2 and $g(x) = x^2 25$, what is the domain of $q(x) = \frac{f(x)}{g(x)}$?

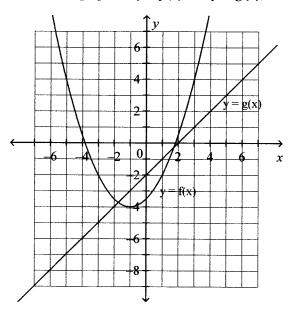
 - **A.** $x \neq 25$ **B.** $x \neq 5, x \neq -5$ **C.** $x \neq -2$ **D.** $x \in \mathbb{R}$

28. *Here is the graph of y = f(x). What are the domain and range of its inverse?

A. Domain:

$$-5 \le x \le 4$$

Range: $-5 \le y \le -3$


B.

Domain:
$$3 \le x \le 5$$
 Range:

C. Domain:
$$-5 \le x \le 4$$

- $-3 \le x \le 4$
Range: $3 \le y \le 5$
- D. Domain:
 - $3 \le x \le 5$
 - Range: $-4 \le y \le 5$
- **29.** *Given the graphs of y = f(x) and y = g(x), what is the value of f(g(3))?

 $-5 \le y \le 4$

- **A.**
- **B.** −2
- **C.** 2
- D _4
- **30.** *Given $f(x) = \sqrt{4-x}$ and g(x) = 3-5x, what is an explicit equation for f(g(x))?
 - **A.** $f(g(x)) = 3 \sqrt{4 5x}$
- $\mathbf{C.} \quad f(g(x)) = \sqrt{1 5x}$
- **B.** $f(g(x)) = 1 \sqrt{4 5x}$
- $\mathbf{D.} \quad f(g(x)) = \sqrt{5x+1}$

31. *Use these tables. What is the value of f(f(0))?

x	f(x)			
-3	18 11 6			
-2				
-1				
0	3			
1	2			
2	3			
3	6			

- **A.** −2
- **B.** 6
- **C.** 2
- **D.** 0
- 32. *Given $f(x) = \sqrt{2-x}$ and $g(x) = x^2 + 6x 3$, which is an explicit equation for the composite function h(x) = g(f(x)), and what is its domain?
 - **A.** $h(x) = \sqrt{-x^2 6x + 5}$

B. h(x) = -1 - x $x \in \mathbb{R}$

- C. $h(x) = \sqrt{-1-x}$ $x \le -1$ D. $h(x) = -1-x+6\sqrt{2-x}$
- 33. *Which exponential function is increasing?
 - **A.** $y = \left(\frac{1}{4}\right)^x$ **B.** $y = \left(\frac{4}{3}\right)^x$ **C.** $y = 0.1^x$ **D.** $y = 0.137^x$

- **34.** *What is the y-intercept of the graph of $y = 4^{-4x} + 3$?
 - **A.** 1
- **B.** 3
- **C.** 259
- **D.** 4

- 35. *Solve: $2^{x+1} = 16$

 - **A.** x = 3 **B.** $x = \frac{15}{2}$ **C.** x = -3
- **D.** x = 15

- **36.** *Solve: $125^{-2x} = 25^{x-24}$
- **A.** x = 6 **B.** x = 8 **C.** $x = \frac{25}{3}$ **D.** x = 3

- **37.** *Evaluate log₂ 64.
 - **A.** -6
- **B.** 6
- **C.** 32
- **D.** 62

38. *Write this exponential expression as a logarithmic expression: $3^{\frac{2}{3}} = \sqrt[3]{9}$

$$\mathbf{A.} \quad \frac{2}{3} = \log_3\left(\sqrt[3]{9}\right)$$

C.
$$\frac{2}{3} = \log \sqrt[3]{9}$$
 (3)

B.
$$3 = \log_{\frac{2}{3}} \left(\sqrt[3]{9} \right)$$

D.
$$\log_3\left(\frac{2}{3}\right) = \sqrt[3]{9}$$

39. *Which of these expressions is NOT equal to log 160?

A.
$$\log 80 + \log 2$$

C.
$$\log 16 + \log 10$$

B.
$$\log 48 + \log 112$$

D.
$$\log 8 + \log 20$$

- **40.** *The graph of $y + 4 = \log_6(x + 8)$ is the image of the graph of $y = \log_6 x$ after it has been
 - translated 8 units left and 4 units up.
 - translated 8 units right and 4 units down.
 - translated 8 units left and 4 units down.
 - translated 8 units right and 4 units up.
- **41.** *Which logarithm is equal to $\log_5(x+6) + \log_5 x$?

A.
$$\log_5(8x)$$

C.
$$\log_5(2x+6)$$

B.
$$\log_{10}(x^2+6x)$$

D.
$$\log_5(x^2 + 6x)$$

42. *Solve: $3 \log 9 = \log x$

A.
$$x = \frac{1}{3}$$
 B. $x = 12$

B.
$$x = 12$$

C.
$$x = 729$$

D.
$$x = 27$$

43. *What is the solution of the equation $6(5^{x+3}) = 4500$?

$$A. \quad x = \frac{\log 6}{\log 5}$$

$$\mathbf{C.} \quad x = \frac{\log 750}{\log 5}$$

$$\mathbf{B.} \quad x = \frac{\log 4500}{\log 30}$$

D.
$$x = \log 250$$

- 44. *An account pays 5.0% annual interest, compounded semi-annually (twice a year). What is the interest rate per compounding period, as a decimal?
 - **A.** 5.0
- **B.** 0.025
- **C.** 0.05
- **D.** 2.5
- 45. What is the value of $sin(-256^{\circ})$ to the nearest thousandth?
 - **A.** 0.970
- **B.** −0.242
- **C.** -0.970
- **D.** 1.031

46. *What is the measure of the reference angle for an angle of -546° in standard position?

A. 6°

B. −6°

C. -186°

D. 84°

47. *What is the length of the arc that subtends a central angle of 80° in the unit circle?

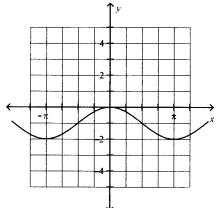
A. $\frac{2}{9}\pi$ units

B. $\frac{9}{4}\pi$ units **C.** 40π units **D.** $\frac{4}{9}\pi$ units

48. *What is -120° in radians?

A. $-\frac{2}{3}\pi$ radians B. $\frac{-21600}{\pi}$ radians C. -120π radians D. $-\frac{2}{3}$ radians

49. *What is the amplitude of the function $y = 7 \sin x$?


A. −7

В.

C. 14

D. 7π

50. *Which function below describes this graph?

A. $y = 2\cos x$

B. $y = \cos x$

C. $y = \cos x - 1$ **D.** $y = \cos x - 2$

51. *What is the period of the function $y = 7\cos 9\left(x + \frac{\pi}{7}\right) + 2$?

B. $\frac{\pi}{7}$ **C.** 7π

D. $\frac{9\pi}{2}$

52. *What is the period of the function $y = 5 \sin \frac{3\pi}{5} (x+1) + 8$?

D. 2

53. What are the solutions of the equation $\tan x = -\frac{1}{2}$ for $0 \le x \le 2\pi$, to the nearest hundredth?

A. x = 1.11 or x = 2.68

C. x = 2.68 or x = 5.82

B. x = 153.43

D. x = -0.55

- **54.** *Identify the transformations that would be applied to the graph of $y = \cos x$ to get the graph of $y = 7\cos\left(x \frac{\pi}{2}\right)$.
 - A vertical stretch by a factor of 7, and then a translation of $\frac{\pi}{2}$ units left
 - A vertical stretch by a factor of $\frac{\pi}{2}$, and then a translation of 7 units right
 - A vertical stretch by a factor of 7, and then a translation of $\frac{\pi}{2}$ units right
 - A horizontal stretch by a factor of 7, and then a translation of $\frac{\pi}{2}$ units right
- What are the solutions of the equation $\cos 2x = -\frac{1}{4}$ for $0 \le x \le \pi$, to the nearest hundredth?
 - **A.** x = 0.91 or x = 2.23

C. x = 52.24

B. $x \doteq 0.91$ or $x \doteq 2.48$

- **D.** x = 1.82 or x = 4.46
- 56. What are the roots of the equation $2 \tan x + 1 = 0$ for $-180^{\circ} \le x \le 180^{\circ}$, to the nearest degree?
 - **A.** $x \doteq 3^{\circ}$

C. $x \doteq -27^{\circ} \text{ or } x \doteq 63^{\circ}$ **D.** $x \doteq -0^{\circ}$

B. $x = -27^{\circ} \text{ or } x = 153^{\circ}$

- 57. *Write the expression $\frac{\csc\theta\cot\theta\sin\theta}{\cos\theta}$ as a single term.
 - A. $\cot \theta$
- **B.** $\csc \theta$
- C. $\cos \theta$
- **D.** $\sec \theta$
- 58. *Write the expression $\sec \theta (\sin^2 \theta 1)$ as a single term.
 - A. $\cos\theta$
- **B.** $-\cos^2\theta$
- C. $-\cos\theta$
- **D.** $\sec^2\theta$
- 59. *Write the expression $\sin 5\theta \cos 2\theta + \cos 5\theta \sin 2\theta$ as a single term.
 - A. $\sin 3\theta$
- **B.** $\sin 7\theta$
- C. $\cos 3\theta$
- **D.** $\cos 7\theta$
- **60.** *What is the exact value of the expression $\sin 40^{\circ} \cos 95^{\circ} + \cos 40^{\circ} \sin 95^{\circ}$?
 - **A.** -1
- В.
- C. $-\frac{1}{\sqrt{2}}$ D. $\frac{1}{\sqrt{2}}$
- *Write the expression $2\sin 4\theta \cos 4\theta$ as a single term.
 - A. $\cos 8\theta$
- **B.** $\sin 10\theta$
- C. $\cos 10\theta$
- **D.** $\sin 8\theta$
- 62. *At a school cafeteria, a meal consists of a main dish, a side dish, and a dessert. There are 3 main dishes, 4 side dishes, and 7 desserts to choose from. How many different meals are possible?
 - **A.** 36
- **B.** 84
- C. 45
- **D.** 14

63.	*A video game allows a player to customize the appearance of her avitar. There are 5 hair colours, 6 hairstyles, 3 faces, and 8 outfits to choose from. How many different avitars can be created?								
	A.	720	B.	22	C.	264	D.	280	
64.		security code consi- ny different security			by 1	digit. The first lette	r in 1	the code must be a vowel.	

65. *Which expression cannot be evaluated?

66. *How many 2-letter permutations are there for the word LEARN?

B. 175 760

 $\mathbf{B}_{\bullet} = \mathbf{P}_{\bullet}$

B. 20

67. *What is the value of $\frac{11!}{6!5!}$?

B. 1 663 200

C. 39 916 800

C. 141 960

 \mathbf{C} . ${}_{\mathbf{q}}\mathbf{P}_{\mathbf{q}}$

C. 6

D. 462

D. 118

D. 3390

D. $_{12}P_{14}$

How

68. *Which of these numbers has the least number of permutations of all its digits?

A. 445 869

A. 33 800

 \mathbf{A} . $_{8}\mathbf{P}_{6}$

A. 120

B. 859 647

C. 444 444

D. 444 484

69. *A student has 12 different books on her bookshelf. She wants to take 6 of them with her on a train trip. How many selections of 6 books could she make?

A. 665 280

В. 720 C. 924

D. 72

70. *Which expression is *not* equivalent to ₃C₂?

A. $\frac{3!}{2!(3-2)!}$ **B.** $\frac{{}_{3}P_{2}}{2!}$ **C.** ${}_{3}C_{1}$

D. $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$

71. *What is the value of the 6th number in row 11 of Pascal's triangle?

A. $_{10}C_{5}$

B. $_{12}C_{7}$

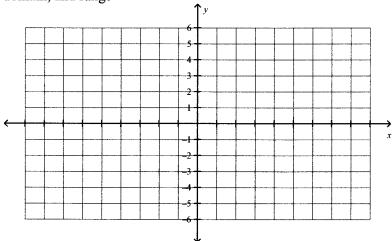
 $C_{11}C_{6}$

D. ,C₁₀

72. *What are the first three terms in the expansion of $(x+8)^{11}$?

A. $x^{11} + 8x^{10} + 64x^9$

C. $x^{11} + 88x^{10} + 3520x^9$


B. $x^{11} + 11x^{10} + 55x^9$

D. $x^{11} + 80x^{10} + 2880x^9$

Problem

- 1. For what values of k does the equation $125^x = 25^{(x^2 + k)}$ have no real solution?
- 2. Sketch the graph of $y = 4\cos 2\left(x \frac{\pi}{4}\right) + 1$.

Describe these characteristics of the function: amplitude, period, phase shift, equation of the centre line, domain, and range

3. Prove the identity $\sin^2 \theta = 1 + \cot^2 \theta \cos^2 \theta - \cot^2 \theta$.

 $4. \quad \text{Expand} \left(\frac{1}{4} x + \frac{2}{5} y \right)^5.$