Analysis of Units and Conversions

Chapter Section 1.4

Dimensional Analysis

o A method to convert from one unit to another using conversion factors
o Conversion factors are equal to one so they change the unit without changing the data (25 kg is equal to 55 lbs).

- Convert 25Ibs to Kg
$025 \mathrm{~kg} \times \frac{2.2 l b s}{1 \mathrm{lg} g}=55 \mathrm{lbs}$
o Convert 3240 yards to km

3240 yards $\times \frac{1.09 \mathrm{mt}}{1 \text { yatd }} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=3.53 \mathrm{~km}$

What is 13.5 kg in μg ?

A. $1.35 \times 10^{10} \mu g$
B. $1.35 \times 10^{7} \mu g$
C. $1.35 \times 10^{8} \mu g$
D. $1.35 \times 10^{4} \mu g$

A. $1.35 \times 10^{10} \mu g$

13.5 $\mathrm{kg} \times \frac{1000 g}{1 \mathrm{~kg}} \times \frac{1 \times 10^{6} \mu g}{1 g}=1.35 \times 10^{10} \mu g$

Derived Unit Conversions

- Composed of more than one unit (m / s) or (g/mL)
- Involves more canceling of units so keep your conversation factors CLEAR
$03.45 \mathrm{mg} / \mathrm{mL}$ to kg / L
$0 \frac{3.45 \mathrm{mg}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=$
$03.45 \times 10^{-3} \mathrm{~kg} / \mathrm{L}$

Convert the density of gold from $19200 \mathrm{mg} / \mathrm{mL}$ to kg / L
A. $19200 \mathrm{~kg} / \mathrm{L}$
B. $1.92 \times 10^{-2} \mathrm{~kg} / \mathrm{L}$
C. $1.92 \times 10^{4} \mathrm{~kg} / \mathrm{L}$
D. 19.2 kg/L

D. $19.2 \mathrm{~kg} / \mathrm{L}$

Derived Units as a Conversion

 Factoro Allows us to convert from different measures

- Rate to convert between distance and time
- Density to convert between mass and volume

How to use derived units as a conversion factor

o Decide what form of the conversion factor to use: g / mL or the reciprocal, mL / g.

- Arrange the conversion with units only making sure the cancellation is correct
- Calculate
- Express with correct sig figs

Page 49 of your text

Sample Problem - Use of Density as a Conversion Factor

What is the volume in L of a 15.0 kg piece of zinc metal? (Density of $\mathrm{Zn}=7.13 \mathrm{~g} / \mathrm{mL}$)

What to Think about

1. Decide what form of the conversion factor to use: g / mL or the reciprocal, mL / g.
Always begin by arranging the factors using units only. As the answer will contain one unit, begin with one unit, in this case, kg .
2. Insert the appropriate numerical values for each conversion factor.
In order to cancel a mass and convert to a volume, use the reciprocal of the density: $\frac{1 \mathrm{~mL}}{7.13 \mathrm{~g}}$
3. Calculate the answer with correct unit and number of significant digits.

How to Do It

$15.0 \mathrm{~kg} \times \frac{g}{\mathrm{~kg}} \times \frac{m L}{g} \times \frac{\mathrm{L}}{m L}=L$
$15.0 \log \times \frac{10^{3} \mathrm{G}}{1 \operatorname{tog}} \times \frac{1 \mathrm{~mL}}{7.13 \mathrm{~V}} \times \frac{10^{-3} \mathrm{~L}}{1 \text { tat }}=2.10 \mathrm{~L}$

What is the volume of a 13.0 kg piece of Aluminum ?(Density of $\mathrm{Al} 2.70 \mathrm{~g} / \mathrm{mL})$
A. 35.1 L
B. 4.81 L
C. $3.51 \times 10^{-3} \mathrm{~L}$ D. $4.81 \times 10^{-3} \mathrm{~L}$

B. 4.81 L

The density of copper is 8.96 g / mL, what is the mass of 6.0L? A. 53.76 g B. 53000 kg
C. 54 kg
D.54g

C. 54 kg

The speed of sound is $330 \mathrm{~m} / \mathrm{s}$. If you count 12 s after seeing a flash of lightning, how many km is it away?
A. 4.0 km
B. 3.96 km
C. 0.036 km
D. $4.0 \times 10^{-2} \mathrm{~km}$

A. 4.0 km

How to cancel units with exponents (m^{3})
o Write it more than once (p.52)

$$
\begin{aligned}
& 0.35 \mathrm{~m}^{3} \times \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}} \times \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}} \times \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \\
& \quad=3.5 \times 10^{5} \mathrm{~mL}
\end{aligned}
$$

- Use brackets and exponents

$$
0.35 \mathrm{~m}^{3} \times\left(\frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}}\right)^{3} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}}=3.5 \times 10^{5} \mathrm{~mL}
$$

Atmospheric pressure on mars is $0.090 \mathrm{lb} / \mathrm{in}^{2}$. Express in $\mathrm{g} / \mathrm{cm}^{2}$ (Given $454 \mathrm{~g}=1.00 \mathrm{lb}$)
A. $6.33 \mathrm{~g} / \mathrm{cm}^{2}$
B. $16.1 \mathrm{~g} / \mathrm{cm}^{2}$
C. $16 \mathrm{~g} / \mathrm{cm}^{2}$
D. $6.3 \mathrm{~g} / \mathrm{cm}^{2}$

D. $6.3 \mathrm{~g} / \mathrm{cm}^{2}$

Temperature

- The measure of heat
- The average kinetic energy of the particles is sample of matter
- Celsius, Kelvin and Fahrenheit
- Absolute zero is $-273.15^{\circ} \mathrm{C}$ or OK

Common Scales

o Notice that $1^{\circ} \mathrm{C}$ is equal to 1 K

- But $1^{\circ} \mathrm{C}$ is equal to $1.8^{\circ} \mathrm{F}$

Figure 1.4.3 The three
commonly used temperature scales

Temperature

- The number of significant figures in a temperature is determined using the rule of precision.
- Use the precision of the given
- There is no degree symbol $\left({ }^{\circ}\right)$ placed before K.

Converting between

$$
T_{\mathrm{F}}=\frac{1.8^{\circ} \mathrm{F}}{1^{\circ} \mathrm{C}}\left(T_{\mathrm{C}}\right)+32^{\circ} \mathrm{F} \text { and } T_{\mathrm{C}}=\left(T_{\mathrm{F}}-32^{\circ} \mathrm{F}\right) \times \frac{1^{\circ} \mathrm{C}}{1.8^{\circ} \mathrm{F}}
$$

$$
T_{\mathrm{K}}=T_{\mathrm{C}} \frac{(1 \mathrm{~K})}{\left(1^{\circ} \mathrm{C}\right)}+273.15 \mathrm{~K} \text { and } T_{\mathrm{c}}=\left(T_{\mathrm{k}}-273.15 \mathrm{~K}\right) \times \frac{1^{\circ} \mathrm{C}}{1 \mathrm{~K}}
$$

What would $19.8^{\circ} \mathrm{C}$ be in ${ }^{\circ} \mathrm{F}$?
A. $290^{\circ} \mathrm{F}$
B. $-6.22^{\circ} \mathrm{F}$
C. $67.6^{\circ} \mathrm{F}$
D. $54.2^{\circ} \mathrm{F}$

C. $67.6^{\circ} \mathrm{F}$

Convert - $88.7^{\circ} \mathrm{C}$ to K

A. -184.45 K
B. 184.45 K
C. -127.7 K
D. -67.1 K

B. 184.45 K

Convert $125^{\circ} \mathrm{F}$ to K

A. -325 K
B. 398 K
C. 325 K
D. -398 K

C. 325 K

Homework

o Problem Set- due Friday
o Finish workbook questions

More Questions

oQuestion:

Levoxyl is a drug used to treat hypothyroidism. If a patient takes one 75μ g tablet per day, how many milligrams of Levoxyl are in their 1 month (30 day) supply?

2.3 g

$\frac{75 \mu g}{\text { day }} \times \frac{1 \mathrm{mg}}{1000 \mu g} \times \frac{30 \text { days }}{1 \text { month }}=2.3 \mathrm{~g}$

A popular web site states that a 130 pound person will burn $472 \mathrm{Cal} / \mathrm{hr}$ bicycling (moderate effort) and $649 \mathrm{CaI} / \mathrm{hr}$ rock climbing (ascending).

Alexandra (who happens to weigh 130 pounds) has decided to start a training program bicycling for 45 minutes, 3 times/week as well as rock climbing for 1.5 hours every Saturday. How many extra Calories will Alexandra burn in 8 weeks of training? What percentage of those calories are from bicycling?

016000 and 52\% from cycling

bicycling:

$$
\frac{45 \mathrm{~min}}{\text { workout }} \times \frac{3 \text { workouts }}{\text { week }} \times \frac{8 \text { weeks }}{\text { training program }} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{472 \mathrm{Cal}}{\mathrm{hr}}=8496 \frac{\mathrm{Cal}}{\text { training program }}
$$

rockclimbing:

$$
\frac{1.5 \mathrm{hr}}{\text { workout }} \times \frac{1 \text { workout }}{\text { week }} \times \frac{8 \text { weeks }}{\text { training program }} \times \frac{649 \mathrm{Cal}}{h r}=7788 \frac{\mathrm{Cal}}{\text { training program }}
$$

total: $8496 \mathrm{Cal}+7788 \mathrm{Cal}=16,284$ (round to 2 sig figs) $=16,000 \mathrm{Cal}$
\% from bicycling: 52\%
o Brad's computer has 23.5 GB (gigabytes: $1 \mathrm{~GB}=1024 \mathrm{MB}$) of free space. His drive has a capacity of 40.0 GB . A typical writable CD will hold about 700 MB of electronic material.
o How many CD's does Brad need to completely back up his computer?

25 (possibly more)

$$
\begin{aligned}
& \text { Used Space: } 40.0 G B-23.5 G B=16.5 G B \\
& 16.5 G B \times \frac{1024 M B}{1 G B} \times \frac{1 C D}{700 M B}=24.1 C D s
\end{aligned}
$$

As the material will fill over 24 CDs, Brad will need at least 25 to back up his computer - and possibl more as he may not be able to fill each CD to capacity.
If he were to use floppies:

