Analysis of Units and Conversions

Chapter Section 1.4

Dimensional Analysis

- A method to convert from one unit to another using conversion factors
- Conversion factors are equal to one so they change the unit without changing the data (25kg is equal to 55lbs).
- Convert 25lbs to Kg

$$0.25 \text{kg X} \frac{2.2 \text{lbs}}{1 \text{kg}} = 55 \text{lbs}$$

Convert 3240 yards to km

3240 yards
$$x \frac{1.09 m}{1 \text{ yard}} x \frac{1km}{1000m} = 3.53 \text{ km}$$

What is 13.5 kg in μg ?

A. $1.35 \times 10^{10} \mu g$

B. $1.35 \times 10^7 \mu g$

C. 1.35 x $10^8 \mu g$

D.1.35 x $10^4 \mu g$

A. $1.35 \times 10^{10} \mu g$

13.5kg x
$$\frac{1000g}{1kg}$$
 x $\frac{1x \ 10^6 \ \mu g}{1g}$ = 1.35 x $10^{10} \ \mu g$

Derived Unit Conversions

- Composed of more than one unit (m/s) or (g/mL)
- Involves more canceling of units so keep your conversation factors CLEAR
- 3.45 mg/mL to kg/L

$$\frac{3.45 \text{mg}}{1 \, mL} \times \frac{1g}{1000 mg} \times \frac{1kg}{1000g} \times \frac{1000 mL}{1 \, L} =$$

 \circ 3.45 x10⁻³ kg/L

Convert the density of gold from 19200 mg/mL to kg/L

A. 19200kg/L

B.1.92 x 10⁻² kg/L

 $C.1.92 \times 10^4 \text{ kg/L}$

D.19.2 kg/L

D. 19.2 kg/L

- Allows us to convert from different measures
 - Rate to convert between distance and time
 - Density to convert between mass and volume

- Decide what form of the conversion factor to use: g/mL or the reciprocal, mL/g.
- Arrange the conversion with units only making sure the cancellation is correct
- Calculate
- Express with correct sig figs

Page 49 of your text

Sample Problem — Use of Density as a Conversion Factor

What is the volume in L of a 15.0 kg piece of zinc metal? (Density of Zn = 7.13 g/mL)

What to Think about

- Decide what form of the conversion factor to use: g/mL or the reciprocal, mL/g. Always begin by arranging the factors using units only. As the answer will contain one unit, begin with one unit, in this case, kg.
- Calculate the answer with correct unit and number of significant digits.

How to Do It

$$15.0 \text{ kg} \times \frac{g}{\text{kg}} \times \frac{mL}{g} \times \frac{L}{mL} = L$$

$$15.0 \frac{\text{kg}}{\text{kg}} \times \frac{10^3 \, \text{g}}{1 \, \text{kg}} \times \frac{1 \, \text{mL}}{\text{7.13 g}} \times \frac{10^{-3} \, \text{L}}{1 \, \text{mL}} = 2.10 \, \text{L}$$

What is the volume of a 13.0kg piece of Aluminum ?(Density of Al 2.70 g/mL)

A. 35.1 L

B. 4.81 L

C. 3.51 x 10⁻³ L

D. 4.81 x10⁻³ L

B. 4.81 L

The density of copper is 8.96 g/mL, what is the mass of 6.0L?

A.53.76 g

B.53000 kg

C.54kg

D.54g

C. 54kg

The speed of sound is 330m/s. If you count 12 s after seeing a flash of lightning, how many km is it away?

A. 4.0 km

B. 3.96 km

C. 0.036km

D. $4.0 \times 10^{-2} \text{ km}$

A. 4.0 km

How to cancel units with exponents (m³)

Conversion

factor

Write it more than once (p.52)

Use brackets and exponents

$$0.35 \,\mathrm{m}^3 \times \left(\frac{1 \,\mathrm{cm}}{10^{-2 \,\mathrm{m}}}\right)^3 \times \frac{1 \,\mathrm{mL}}{1 \,\mathrm{cm}^3} = 3.5 \times 10^5 \,\mathrm{mL}$$

Atmospheric pressure on mars is 0.090 lb/in^2 . Express in $g/\text{cm}^2(\text{Given } 454 \text{ g} = 1.00 \text{ lb})$

A. 6.33 g/cm²

B. 16.1 g/cm²

C. 16 g/cm²

D. 6.3 g/cm²

D. 6.3 g/cm²

- The measure of heat
- The average kinetic energy of the particles is sample of matter
- Celsius, Kelvin and Fahrenheit
- Absolute zero is -273.15°C or OK

Kelvin Celsius Fahrenheit -373° -100°

Figure 1.4.3 The three commonly used temperature scales

Common Scales

- Notice that 1 °C is equal to 1 K
- But 1 °C is equal to 1.8 °F

- The number of significant figures in a temperature is determined using the rule of precision.
- Use the precision of the given
- There is no degree symbol (°) placed before K.

9

Converting between

$$T_{\rm F} = \frac{1.8^{\circ} \text{F}}{1^{\circ} \text{C}} (T_{\rm C}) + 32^{\circ} \text{F} \text{ and } T_{\rm C} = (T_{\rm F} - 32^{\circ} \text{F}) \times \frac{1^{\circ} \text{C}}{1.8^{\circ} \text{F}}$$

$$T_{\rm K} = T_{\rm C} \frac{(1 \text{ K})}{(1^{\circ}\text{C})} + 273.15 \text{ K} \text{ and } T_{\rm c} = (T_{\rm k} - 273.15 \text{ K}) \times \frac{1^{\circ}\text{C}}{1 \text{ K}}$$

What would 19.8°C be in °F?

A. 290 °F

B. -6.22 °F

C. 67.6 °F

D. 54.2 °F

C. 67.6 °F

Convert -88.7 °C to K

A. -184.45 K

B. 184.45 K

C. -127.7 K

D. -67.1 K

B. 184.45 K

Convert 125 °F to K

A. -325 K

B. 398 K

C. 325 K

D. -398 K

C. 325 K

Homework

- Problem Set- due Friday
- Finish workbook questions

More Questions

Question:

Levoxyl is a drug used to treat hypothyroidism. If a patient takes one 75 µg tablet per day, how many milligrams of Levoxyl are in their 1 month (30 day) supply?

2.3g

$$\frac{75~\mu g}{day} \times \frac{1~mg}{1000~\mu g} \times \frac{30~days}{1~month} = 2.3~g$$

Alexandra (who happens to weigh 130 pounds) has decided to start a training program bicycling for 45 minutes, 3 times/week as well as rock climbing for 1.5 hours every Saturday. How many extra Calories will Alexandra burn in 8 weeks of training? What percentage of those calories are from bicycling?

16000 and 52% from cycling

bicycling:

$$\frac{45\ min}{workout} \times \frac{3\ workouts}{week} \times \frac{8\ weeks}{training\ program} \times \frac{1\ hr}{60\ min} \times \frac{472\ Cal}{hr} = 8496\ \frac{Cal}{training\ program}$$

rockclimbing:

$$\frac{1.5\ hr}{workout} \times \frac{1\ workout}{week} \times \frac{8\ weeks}{training\ program} \times \frac{649\ Cal}{hr} = 7788\ \frac{Cal}{training\ program}$$

total: 8496 Cal + 7788 Cal = 16,284 (round to 2 sig figs) = 16,000 Cal

% from bicycling: 52%

How many CD's does Brad need to completely back up his computer?

25 (possibly more)

 $Used\ Space: 40.0\ GB - 23.5\ GB = 16.5\ GB$

$$16.5~GB \times \frac{1024~MB}{1~GB} \times \frac{1~CD}{700~MB} = 24.1~CDs$$

As the material will fill over 24 CDs, Brad will need at least 25 to back up his computer - and possible more as he may not be able to fill each CD to capacity.

If he were to use floppies: