## KEY: Acids, Bases, and Salts Review for Sections 4.1 – 4.15

| 1. | Consider the following:                                                                                                                                                                         |                                                                 |      |             |     |                                |    |                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|-------------|-----|--------------------------------|----|-------------------------------|
|    | I $H_2CO_3 + F^- \leftrightarrows HCO_3^- + HF$<br>II $HCO_3^- + HC_2O_4^- \leftrightarrows H_2CO_3 + C_2O_4^{2-}$<br>III $HCO_3^- + H_2C_6H_6O_7^- \leftrightarrows H_2CO_3 + HC_6H_5O_7^{2-}$ |                                                                 |      |             |     |                                |    |                               |
|    | The HCO <sub>3</sub> <sup>-</sup> is a base in                                                                                                                                                  |                                                                 |      |             |     |                                |    |                               |
|    | A.<br>B.<br>C.<br><b>D.</b>                                                                                                                                                                     | I only I and II only II and III only I, II, and III             |      |             |     |                                |    |                               |
| 2. | The volume of $0.200~M~Sr(OH)_2$ needed to neutralize $50.0~mL$ of $0.200~M~HI$ is                                                                                                              |                                                                 |      |             |     |                                |    |                               |
|    | A. <b>B.</b> C. D.                                                                                                                                                                              | 10.0 mL<br>25.0 mL<br>50.0 mL<br>100.0 mL                       |      |             |     |                                |    |                               |
| 3. | The pOH of 0.050 M HCl is                                                                                                                                                                       |                                                                 |      |             |     |                                |    |                               |
|    | A.<br>B.<br>C.<br>D.                                                                                                                                                                            | 0.050<br>1.30<br><b>12.70</b><br>13.70                          |      |             |     |                                |    |                               |
| 4. | The volume of $0.450~M$ HCl needed to neutralize $40.0~mL$ of $0.450~M$ Sr(OH) $_2$ is                                                                                                          |                                                                 |      |             |     |                                |    |                               |
|    | A.<br>B.<br>C.<br><b>D.</b>                                                                                                                                                                     | 18.0 mL<br>20.0 mL<br>40.0 mL<br><b>80.0 mL</b>                 |      |             |     |                                |    |                               |
| 5. | Consider the following                                                                                                                                                                          |                                                                 |      |             |     |                                |    |                               |
|    | I                                                                                                                                                                                               | H <sub>3</sub> PO <sub>4</sub>                                  | II : | $H_2PO_4^-$ | III | HPO <sub>4</sub> <sup>2-</sup> | IV | PO <sub>4</sub> <sup>3-</sup> |
|    | Which of the following solutions will have the largest $[H_30^+]$ ?                                                                                                                             |                                                                 |      |             |     |                                |    |                               |
|    | A. <b>B.</b> C. D.                                                                                                                                                                              | I and II only II and III only I, II, and III on II, III, and IV | ly   |             |     |                                |    |                               |
| 6. | Which of the following solutions will have the largest $[H_3O^+]$ ?                                                                                                                             |                                                                 |      |             |     |                                |    |                               |
|    | A. 1.0 M HNO <sub>2</sub> B. 1.0 M HBO <sub>3</sub> C. 1.0 M H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> D. 1.0 M HCOOH                                                                        |                                                                 |      |             |     |                                |    |                               |
| 7. | Consider the following: $H_2O + 57 \text{ kJ} \leftrightarrows H_3O^+ + OH^-$                                                                                                                   |                                                                 |      |             |     |                                |    |                               |
|    | When the temperature of the system is increased, the equilibrium shifts                                                                                                                         |                                                                 |      |             |     |                                |    |                               |
|    | A.<br>B.                                                                                                                                                                                        |                                                                 |      |             |     |                                |    |                               |

Chemistry 12

right and the Kw increases

right and the Kw decreases

C.

D.

- 8. A 1.0 M solution of sodium dihydrogen phosphate is
  - A. acidic and the pH < 7.00
  - B. acidic and the pH > 7.00
  - C. basic and the pH < 7.00
  - D. basic and the pH > 7.00
- 9. A Bronsted-Lowry base is defined as a chemical species that
  - A. accepts protons
  - B. neutralizes acids
  - C. donated electrons
  - D. produces hydroxides ions in solution
- 10. Which of the following solutions will have the greatest electrical conductivity?
  - A. 1.0 M HCN
  - B. 1.0 M H<sub>2</sub>SO<sub>4</sub>
  - C. 1.0 M H<sub>3</sub>PO<sub>4</sub>
  - D. 1.0 M CH<sub>3</sub>COOH
- 11. Consider the following equilibrium:  $HC_6H_5O_7^{2-} + HIO_3 \leftrightarrows H_2C_6H_5O_7^{-} + IO_3^{-}$

The order of Bronsted-Lowry acids and bases is

- A. acid, base, acid, base
- B. acid, base, base, acid
- C. base, acid, acid, base
- D. base, acid, base acid
- 12. Consider the following:  $H_2O_{(1)} \leftrightarrows H^+ + OH^-$

When a small amount of 1.0 M KOH is added to the above system, the equilibrium

- A. shifts left and [H<sup>+</sup>] decreases
- B. shifts left and [H<sup>+</sup>] increases
- C. shifts right and [H<sup>+</sup>] decreases
- D. shifts right and [H<sup>+</sup>] increases
- 13. Which of the following has the highest pH?
  - A. 1.0 M NaIO<sub>3</sub>
  - B. 1.0 M Na<sub>2</sub>CO<sub>3</sub>
  - C. 1.0 M Na<sub>3</sub>PO<sub>4</sub>
  - D. 1.0 M Na<sub>2</sub>SO<sub>4</sub>
- 14. In a 100.0 mL sample of 0.0800 M NaOH the  $[\text{H}_3\text{O}^+]$  is
  - A. 1.25 x 10<sup>-13</sup> M
  - B. 1.25 x 10<sup>-12</sup> M
  - C.  $8.00 \times 10^{-3} \text{ M}$
  - D.  $8.00 \times 10^{-2} \text{ M}$

- 15. Consider the following:
  - I ammonium nitrate II calcium nitrate III iron III nitrate

When dissolved in water, which of these salts would form a neutral solution?

- A. II only
- B. III only
- C. I and III only
- D. I, II, and III
- 16. Consider the following:  $SO_4^{2-} + HNO_2 + HSO_4^{-} + NO_2^{-}$

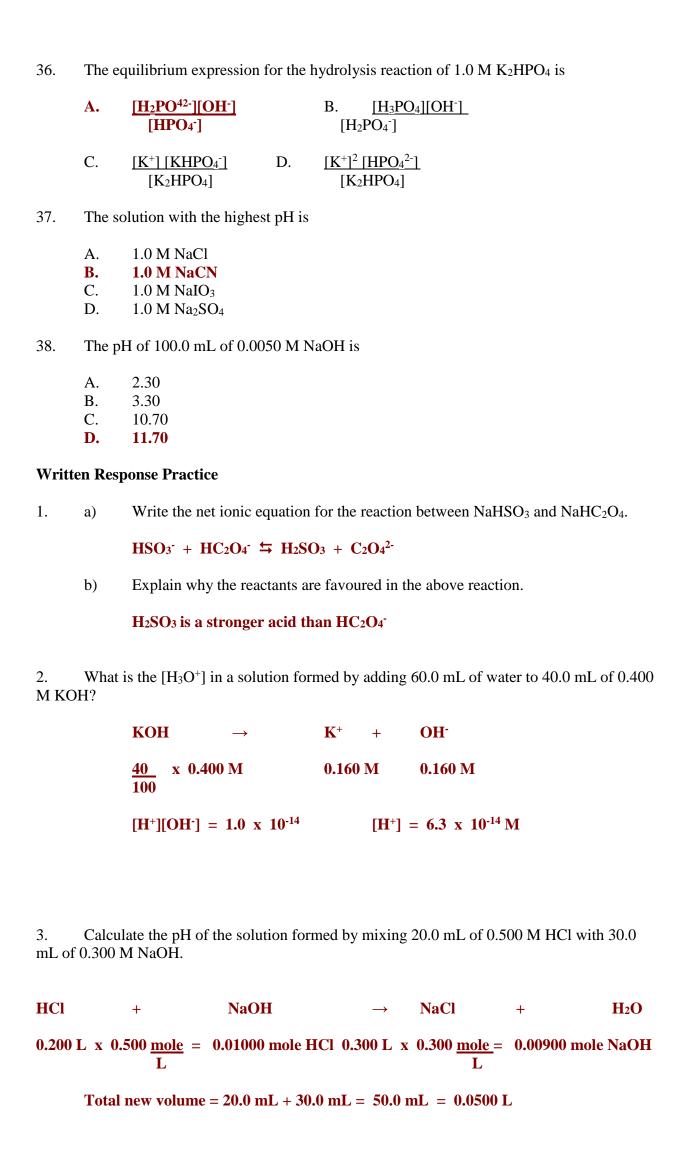
Equilibrium would favour the

- A. the products since HSO<sub>4</sub> is a weaker acid than HNO<sub>2</sub>
- B. the reactants since HSO<sub>4</sub> is a weaker acid than HNO<sub>2</sub>
- C. the products since HSO<sub>4</sub> is a stronger acid than HNO<sub>2</sub>
- D. the reactants since HSO<sub>4</sub> is a stronger acid than HNO<sub>2</sub>
- 17. The net ionic equation for the hydrolysis of Na<sub>2</sub>CO<sub>3</sub> is
  - A.  $H_2O + Na^+ \leftrightarrows NaOH + H^+$
  - B.  $H_2O + 2Na^+ \leftrightarrows Na_2O + 2H^+$
  - C.  $H_2O + CO_3^{2-} \leftrightarrows H_2CO_3 + O^{2-}$
  - D.  $H_2O + CO_3^{2-} \leftrightarrows HCO_3^{-} + OH^{-}$
- 18. Consider the following equilibrium:  $2H_2O_{(1)} \leftrightarrows H_3O^+ + OH^-$

A few drops of 1.0 M HCl are added to the above system. When equilibrium is re-established, the

- A. [H<sub>3</sub>O<sup>+</sup>] has increased and the [OH<sup>-</sup>] has decreased
- B. [H<sub>3</sub>O<sup>+</sup>] has increased and the [OH<sup>-</sup>] has increased
- C. [H<sub>3</sub>O<sup>+</sup>] has decreased and the [OH<sup>-</sup>] has increased
- D. [H<sub>3</sub>O<sup>+</sup>] has decreased and the [OH<sup>-</sup>] has decreased
- 19. A basic solution
  - A. tastes sour
  - B. feels slippery
  - C. does not conduct electricity
  - D. reacts with metals to release oxygen gas
- 20. The balanced formula equation for the neutralization of H<sub>2</sub>SO<sub>4</sub> by KOH is
  - A.  $H_2SO_4 + KOH \rightarrow KSO_4 + H_2O$
  - B.  $H_2SO_4 + KOH \rightarrow K_2SO_4 + H_2O$
  - C.  $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + H_2O$
  - D.  $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$
- 21. An Arrhenius base is defined as a substance which
  - A. donates protons
  - B. donates electrons
  - C. produces H<sup>+</sup> in solution
  - D. produces OH<sup>-</sup> in solution

- 22. Consider the following equilibrium:  $HS^- + H_3PO_4 \leftrightarrows H_2S + H_2PO_4^-$ The order of Bronsted-Lowry acids and bases is
  - A. acid, base, acid, base.
  - B. acid, base, base, acid
  - C. base, acid, acid, base
  - D. base, acid, base, acid
- 23. The equation representing the reaction of ethanoic acid with water is
  - A.  $CH_3COO^- + H_2O \leftrightarrows CH_3COOH + OH^-$
  - B.  $CH_3COO^- + H_2O \leftrightarrows CH_3COO^{2-} + H_3O^+$
  - C.  $CH_3COOH + H_2O \leftrightarrows CH_3COO^- + H_3O^+$
  - D.  $CH_3COOH + H_2O \leftrightarrows CH_3COOH_2^+ + OH^-$
- 24. Consider the following equilibrium:  $2H_2O + 57kJ + H_3O^+ + OH^-$


When the temperature is decreased, the water

- A. stays neutral and the  $[H_3O^+]$  increases
- B. stays neutral and the [H<sub>3</sub>O<sup>+</sup>] decreases
- C. becomes basic and [H<sub>3</sub>O<sup>+</sup>] decreases
- D. becomes acidic and [H<sub>3</sub>O<sup>+</sup>] increases
- 25. The conjugate acid of  $C_6H_50^-$  is
  - A.  $C_6H_4O^-$
  - B. C<sub>6</sub>H<sub>5</sub>OH
  - C.  $C_6H_4O^{2-}$
  - D.  $C_6H_5OH^+$
- 26. Which of the following solutions will have the greatest electrical conductivity?
  - A. 1.0 M HCl
  - B. 1.0 M HNO<sub>2</sub>
  - C. 1.0 M H<sub>3</sub>BO<sub>3</sub>
  - D. 1.0 M HCOOH
- 27. A solution of 1.0 M HF has
  - A. a lower pH than a solution of 1.0 M HCl
  - B. a higher pOH than a solution of 1.0 M HCl
  - C. a higher [OH<sup>-</sup>] than a solution of 1.0 M HCl
  - D. a higher  $[H_3O^+]$  than a solution of 1.0 M HCl
- 28. Which of the following is the weakest acid
  - A. HIO<sub>3</sub>
  - B. HCN
  - C. HNO<sub>3</sub>
  - D. C<sub>6</sub>H<sub>5</sub>COOH

- 29. Considering the following data
  - $Ka = 5.0 \times 10^{-5}$ H<sub>3</sub>AsO<sub>4</sub>  $Ka = 8.0 \times 10^{-8}$  $H_2AsO_4$ HAsO<sub>4</sub><sup>2</sup>- $Ka = 6.0 \times 10^{-10}$

The Kb value for H<sub>2</sub>AsO<sub>4</sub> is

- 2.0 x 10<sup>-10</sup> A.
- $8.0 \times 10^{-8}$ B.
- $1.2 \times 10^{-7}$ C.
- $1.7 \times 10^{-5}$ D.
- In a solution at 25°C, the  $[H_3O^+]$  is 3.5 x  $10^{-6}$  M. The  $[OH^-]$  is 30.
  - $3.5 \times 10^{-20} \,\mathrm{M}$ A.
  - В. 2.9 x 10<sup>-9</sup> M
  - C.  $1.0 \times 10^{-7} M$
  - $3.5 \times 10^{-6} M$ D.
- 31. In a solution with a pOH of 4.22, the [OH-] is
  - $1.7 \times 10^{-10} M$ A.
  - $6.0 \times 10^{-5} M$ В.
  - C.  $6.3 \times 10^{-1} M$
  - $1.7 \times 10^4 \,\mathrm{M}$
- 32. An aqueous solution of NH<sub>4</sub>CN is
  - basic because Ka < Kb A.
  - basic because Ka > Kb B.
  - C. acidic because Ka < Kb
  - D. acidic because Ka > Kb
- 33. The net ionic equation for the predominant hydrolysis reaction of KHSO<sub>4</sub> is
  - $HSO_4$  +  $H_2O \leftrightarrows SO_4$  +  $H_3O$ + A.
  - $HSO_4^- + H_2O \leftrightarrows H_2SO_4 + OH^-$ B.
  - C.
  - D.
- 34. The [OH-] in an aqueous solution always equals
  - A. Kw x  $[H_3O^+]$
  - $Kw [H_3O^+]$ B.
  - C. Kw/[H<sub>3</sub>O<sup>+</sup>]
  - $[H_3O^+]/Kw$ D.
- 35. The [H<sub>3</sub>O<sup>+</sup>] in a solution with pOH of 0.253 is
  - 5.58 x 10<sup>-15</sup> M A.
  - 1.79 x 10<sup>-14</sup> M В.
  - $5.58 \times 10^{-1} M$ C.
  - D.  $5.97 \times 10^{-1} M$



Chemistry 12

 $[H^+] = \frac{0.0010 \text{ moles}}{0.0500 \text{ L}} = 0.020 \text{ M}$ 

$$pH = 1.70$$

4. a) Write the balanced equation representing the reaction of HF with  $H_2O$ .

$$HF + H_2O = H_3O^+ + F^-$$

b) Identify the Bronsted-Lowry bases in the above equation.

5. Consider the following data:

Which is the stronger acid, propanoic acid or babituric acid? Explain using calculations.

$$Ka (HC_4H_3N_2O_3) = \underbrace{Kw}_{Kb(C_3H_5O_2^{-})} = \underbrace{\frac{1.0 \times 10^{-14}}{7.5 \times 10^{-10}}} = 1.3 \times 10^{-5}$$

Barbituric acid is a stronger acid because it has a larger Ka.

6. a) Write equations showing the amphiprotic nature of water as it reacts with HCO<sub>3</sub>-.

$$HCO_{3}^{-} + H_{2}O \leftrightarrows H_{3}O^{+} + CO_{3}^{2-}$$
  
 $HCO_{3}^{-} + H_{2}O \leftrightarrows H_{2}CO_{3} + OH^{-}$ 

b) Calculate the Kb for HCO<sub>3</sub>-.

Kb (HCO<sub>3</sub>·) = 
$$\underline{Kw}$$
 =  $\underline{1.0 \times 10^{-14}}$  = 2.3 x 10<sup>-8</sup>  
 $\underline{Ka(H_2CO_3)}$ 

Chemistry 12