The value of Ksp is the point between the ions precipitating or the ions remaining soluble.

At exactly Ksp, the ions will *just* start to precipitate. You have just arrived at the saturation point.

- a) "Trial Ksp" aka. "The Ion Product" aka. "Q"
 - i) this is a Ksp value for the ion concentrations before mixing with other ion(s).
 - ii) we will have to calculate a Trial Ksp value using the initial ion concentrations, to determine if mixing will result in a precipitate.
- **Q** < **Ksp** Then the ions will stay in solution. Not enough ions to precipitate.
- **Q > Ksp** Then the solution cannot dissolve more ions. The undissolved ions will join and precipitate.
- **Q** = **Ksp** There are just enough ions to barely form a saturated solution.

You are at the saturation point.

b) Predicting Precipitate Calculations

Type 1 (will the ions precipitate when mixed together?)

- General Strategy: 1. Write equilibrium equation and find Ksp
 - 2. Find ion concentration
 - 3. Find Q
 - 4. Compare Q with Ksp

Example: Will a precipitate form when 4.5 mL of 5.0 x 10⁻⁴ M Cu⁺ is mixed with 2.0 mL of 6.0 x 10⁻⁵ M I⁻?

1.
$$CuI_{(s)}$$
 $=$ $Cu^{+}_{(aq)}$ + $I^{-}_{(aq)}$ $Ksp = [Cu^{+}][I^{-}] = 1.3 \times 10^{-12}$

2. Find ion concentrations:

Mixing the two solutions results in a dilution, so we must recalculate the concentrations.

[Cu⁺]
$$C_1V_1 = C_2V_2$$
 (5.0 x 10⁻⁴ M)(4.5mL) = C_2 (6.5mL); [Cu⁺] = 3.5 x 10⁻⁴ M
[I ⁻] $C_1V_1 = C_2V_2$ (6.0 x 10⁻⁵ M)(2.0mL) = C_2 (6.5mL); [I ⁻] = 1.8 x 10⁻⁵ M

3. Find Q:

$$Q = [Cu^+][I^-] = [3.5 \times 10^{-4} \text{ M}][1.8 \times 10^{-5} \text{ M}] = 6.0 \times 10^{-9}$$

4. Compare to Ksp:

Q > Ksp $(6.0x10^{-9})$ $(1.3x10^{-12})$

Thus, a precipitate will form!

Example: Will a precipitate form when 12.0 mL of 1.3 x 10⁻³ M Sr⁺² is mixed with 4.0 mL 2.0 x 10⁻⁹ M SO₄⁻²?

1.
$$SrSO_{4(s)}$$
 $Sr^{+2}_{(aq)}$ + $SO_{4(aq)}^{-2}$ $Ksp = [Sr^{+2}][SO_{4}^{-2}] = 3.4 \times 10^{-7}$

2.
$$[Sr^{+2}] = (12.0 \text{ mL})(1.3 \text{ x } 10^{-3}) / 16.0 \text{ mL} = 9.8 \text{ x } 10^{-4} \text{ M}$$

 $[SO_4^{-2}] = (4.0 \text{ mL}) (2.0 \text{ x } 10^{-9}) / 16.0 \text{ mL} = 5.0 \text{ x } 10^{-10} \text{ M}$

3.
$$Q = [Sr^{+2}][SO_4^{-2}] = (9.8 \times 10^{-4} \text{ M})(5.0 \times 10^{-10} \text{ M}) = 4.9 \times 10^{-13}$$

4. Ksp > Q **Thus, a precipitate will NOT form!** (3.4x10⁻⁷) (4.9x10⁻¹³)

- Example: If 20.0 mL of 5.0 x 10⁻³ M Ca(NO₃)₂ is mixed with 10.0 mL of 2.5 x 10⁻² M Sn(SO₄)₂:
- (a) What precipitate is possible?
- (b) Will this precipitate form at the given concentrations?
- (a) $CaSO_4$ is the only combo of ions that will potentially precipitate according to the solubility table. $(Sn(NO_3)_4$ is soluble at all concentrations)

(b) 1.
$$CaSO_{4(s)}$$
 $Ca^{+2}_{(aq)}$ + $SO_{4(aq)}^{-2}$ $Ksp = [Ca^{+2}][SO_{4(aq)}^{-2}] = 7.1 \times 10^{-5}$

2.
$$[Ca(NO_3)_2] = (20.0 \text{ mL})(5.0 \text{ x } 10^{-3}) / 30.0 \text{ mL} = 3.3 \text{ x } 10^{-3} \text{ M}$$

$$Ca(NO_3)_2 \rightarrow Ca^{+2} + 2NO_3^{-1}$$

3.3 x 10⁻³M 3.3x10⁻³M 6.6x10⁻³M

$$[Sn(SO_4)_2] = (10.0 \text{ mL}) (2.5 \times 10^{-2}) / 30.0 \text{ mL} = 8.3 \times 10^{-3} \text{ M}$$

$$Sn(SO_4)_2 \rightarrow Sn^{+2} + 2SO_4^{-2}$$

8.3 x 10⁻³M 8.3x10⁻³M 1.7x10⁻²M

3.
$$Q = [Ca^{+2}][SO_4^{-2}] = (3.3 \times 10^{-3} \text{ M})(1.7 \times 10^{-2} \text{ M}) = 5.6 \times 10^{-5}$$

4. Ksp > Q Thus, a precipitate will NOT form!
$$(7.1\times10^{-5})$$
 (5.6×10^{-5})

Type 2 (what [ion] is required to precipitate out the other ion?)

General Strategy:

- 1. Write equilibrium equation and find Ksp
- 2. Know Q = Ksp at this particular [ion]
- 3. Solve Ksp equation for other [ion]

Example: If we have a 3.0 x 10⁻⁴ M solution of Pb⁺², what $[I^{-}]$ is required to just start the precipitation of PbI_{2(s)} from the solution?

1.
$$PbI_{2(s)}$$
 $Pb^{+2}_{(aq)}$ + 2 $I^{-}_{(aq)}$
 $Ksp = [Pb^{+2}][I^{-}]^{2} = 8.5 \times 10^{-9}$

2. $Q = Ksp = 8.5 \times 10^{-9}$ (this means we can use the $[Pb^{+2}]$ given)

3.
$$[I^{-}]^{2} = \text{Ksp} / [Pb^{+2}] = 8.5 \times 10^{-9} / 3.0 \times 10^{-4} = 2.8 \times 10^{-5}$$

$$[I^{-}] = \sqrt{(2.8 \times 10^{-5})} = 5.3 \times 10^{-3} M$$

Do questions: # 56 – 69 page 98 - 99

c) Precipitates and Titration

i) What is the purpose of "titration"?

procedure used to determine concentration of one substance by slowly adding another substance with a known concentration.

- ii) Theory:
- 1. The most useful example is titrating for an unknown [Cl-] with AgNO₃ solution.
- 2. The Ag⁺ will precipitate out Cl⁻ as AgCl _(s).
- 3. The point at which the moles of added Ag⁺ = moles of Cl⁻ present is called the *Equivalence Point*.
- 4. The white $AgCl_{(s)}$ will stop forming at the equivalence point.
- 5. Difficult to see when $AgCl_{(s)}$ stops forming, so add a chromate indicator. The Ag^+ will react with CrO_4^{-2} when the Cl^- is used up, to form the easily visible red precipitate of $Ag_2CrO_{4(s)}$.

Example: A 50.0 mL solution with an unknown [Cl-], was titrated with 0.25 M AgNO₃. A precipitate started to form after 32.8 mL of AgNO₃ was added.

- a) What is a precipitate that definitely forms at the equivalence point?
- Excess Ag⁺ reacts with the chromate indicator to form $Ag_2CrO_{4(s)}$.
- b) What is the [Cl-] in the 50.0 mL solution?
- moles $AgNO_3 = 0.25 \text{ M x } 0.0328 \text{ L} = 0.0082 \text{ moles}$
- moles $Ag^+ = moles AgNO_3 = 0.0082$ moles
- Since at equiv. point: moles $Ag^+ = moles Cl^- = 0.0082$ moles
- $[Cl^{-}]$ = 0.0082 moles / 0.050 L = **0.16 M**

Example: A solution with a [Cl-] of 0.24 M, was titrated with 0.50 M AgNO₃. A precipitate started to form after 90.0 mL of AgNO₃ was added. What is the volume of the chloride solution?

moles $AgNO_3 = 0.50 \text{ M x 0.090 L} = 0.045 \text{ moles}$

 $moles AgNO_3 = moles Ag^+ = moles Cl^- = 0.045 moles$

volume Cl⁻ = 0.045 moles / 0.24 M = **0.19** L

Do questions: #70 – 72 page 101