\qquad
\qquad Blk \qquad

3.6 KSp and Solubility

In the last sections, we were able to qualitatively identify which salts were soluble or not soluble.

What about salts that are slightly soluble?
Now, we want to quantify (attach a numerical value) the degree of solubility of the slightly soluble salts.

a) The Solubility Product

i) Salts that are only slightly soluble will form an equilibrium when they dissolve:
ii) We can write an equilibrium expression for the solubility of salt
\qquad
iii) Example: Write the Ksp expression for $\mathrm{Na}_{2} \mathrm{SO}_{4(s)}$
b) Meaning of Ksp
i)
ii)
iii)
iv)

Name \qquad Date \qquad Blk \qquad

c) Experimentally Finding Ksp

Method 1: (1) Simply take $\mathrm{MgF}_{2(\mathrm{~s})}$ and add to water until solution is saturated.
(2) If we know mass of MgF_{2} added and water volume we can find $\left[\mathrm{MgF}_{2}\right]$ and then we know that:

$$
\left[\mathrm{Mg}^{+2}\right]=\left[\mathrm{MgF}_{2}\right] \quad \text { and } \quad\left[\mathrm{F}^{-}\right]=2 \times\left[\mathrm{MgF}_{2}\right]
$$

(3) $\mathrm{Ksp}=$

Method 2: (1) Mix together a source of Mg^{+2} such as $\mathrm{MgSO}_{4(\mathrm{aq})}$ and a source of F^{-}such as $\mathrm{NaF}_{(\mathrm{aq})}$.
(2) Let ppt. of $\mathrm{MgF}_{2(\mathrm{~s})}$ form and "analyze" solution to find $\left[\mathrm{Mg}^{+2}\right]$ and $\left[\mathrm{F}^{-}\right]$.

d) Ksp Calculations

Type 1 (Find Ksp from ion concentrations)

What is the Ksp for PbCl_{2} if $\left[\mathrm{Pb}^{+2}\right]$ is $1.1 \times 10^{-4} \mathrm{M}$ and $\left[\mathrm{Cl}^{-}\right]$is 0.33 M ?

What is the Ksp for AgBr if the solubility of AgBr is $8.8 \times 10^{-7} \mathrm{M}$?

If $1.64 \times 10^{-6} \mathrm{~g}$ of $\mathrm{Zn}(\mathrm{OH})_{2}$ can dissolve in 1.0 mL of water, what is the Ksp ?
\qquad
\qquad
\qquad

Type 2 (Find ion concentrations from Ksp value)

What is the concentration of Ca^{+2} and $\mathrm{CO}_{3}{ }^{-2}$ ions if the Ksp for CaCO_{3} is 4.8×10^{-9} ?

The Ksp for MgF_{2} is 6.4×10^{-9}.
a) What is the $\left[\mathrm{Mg}^{+2}\right]$ and $[\mathrm{F}]$?
b) What is the molar solubility of MgF_{2} ?
c) What is the solubility of MgF_{2} in g / L ?

