In the last sections, we were able to <u>qualitatively</u> identify which salts were soluble or not soluble.

What about salts that are slightly soluble?

Now, we want to <u>quantify</u> (attach a numerical value) the degree of solubility of the slightly soluble salts.

a) The Solubility Product

 i) Salts that are only slightly soluble will form an equilibrium when they dissolve: (don't need much for saturation)

eg.
$$MgF_{2(s)} = Mg^{+2}_{(aq)} + 2F_{(aq)}$$

ii) We can write an equilibrium expression for the solubility of a salt. (solubility product expression)

eg.
$$Ksp = [Mg^{+2}] [F^{-}]^{2}$$

Note: ① attach "sp" to K symbol when dealing with solubility equilibrium.

② It works just like equilibrium expressions! Notice how [MqF,] is not included because it is a solid!

iii) Example: Write the Ksp expression for Na₂SO_{4(s)}

$$Na_{2}SO_{4(s)}$$
 \longrightarrow $2Na^{+}_{(aq)}$ + $SO_{4}^{-2}_{(aq)}$

$$Ksp = [Na^+]^2 [SO_4^{-2}]$$

b) Meaning of Ksp

- i) High Ksp value = higher concentration of ions in solution = High Solubility
- ii) Low Ksp value = lower concentration of ions in solution = Low Solubility
- iii) Ksp is a constant (solubility product constant)
- iv) see pg. 333 in Hebden

c) Experimentally Finding Ksp

Method 1:

- ① Simply take $MgF_{2(s)}$ and add to water until solution is saturated.
- ② If we know mass of MgF₂ added and water volume we can find [MgF₂] and then we know that:

$$[Mg^{+2}] = [MgF_2]$$
 and $[F^-] = 2 \times [MgF_2]$

$$3 \text{ Ksp} = [Mg^{+2}] [F^{-}]^{2}$$

Method 2:

- ① Mix together a source of Mg^{+2} such as $MgSO_{4(aq)}$ and a source of F^- such as $NaF_{(aq)}$.
- ② Let ppt. of $MgF_{2(s)}$ form and "analyze" solution to find $[Mg^{+2}]$ and $[F^{-}]$.

d) Ksp Calculations

Type 1 (Find Ksp from ion concentrations)

d) Ksp Calculations

Type 1 (Find Ksp from ion concentrations)

$$PbCl_{2(s)} = Pb^{+2}_{(aq)} + 2Cl_{(aq)}$$

d) Ksp Calculations

Type 1 (Find Ksp from ion concentrations)

$$PbCl_{2(s)} = Pb^{+2}_{(aq)} + 2Cl_{(aq)}$$

$$Ksp = [Pb^{+2}] [Cl^{-}]^{2}$$

d) Ksp Calculations

Type 1 (Find Ksp from ion concentrations)

$$PbCl_{2(s)} = Pb^{+2}_{(aq)} + 2Cl_{(aq)}$$

$$Ksp = [Pb^{+2}] [Cl^{-}]^{2}$$
 $Ksp = (1.1 \times 10^{-4} \text{ M})(0.33 \text{ M})^{2}$

d) Ksp Calculations

Type 1 (Find Ksp from ion concentrations)

$$PbCl_{2(s)} = Pb^{+2}_{(aq)} + 2Cl_{(aq)}$$

$$Ksp = [Pb^{+2}] [Cl^{-}]^{2}$$
 $Ksp = (1.1 \times 10^{-4} \text{ M})(0.33 \text{ M})^{2}$

$$Ksp = 1.2 \times 10^{-5}$$

$$AgBr_{(s)} = Ag^+_{(aq)} + Br^-_{(aq)}$$

$$AgBr_{(s)} = Ag^{+}_{(aq)} + Br^{-}_{(aq)}$$

8.8 x 10⁻⁷ M 8.8 x 10⁻⁷ M 8.8 x 10⁻⁷ M

$$AgBr_{(s)} = Ag^{+}_{(aq)} + Br^{-}_{(aq)}$$

8.8 x 10⁻⁷ M 8.8 x 10⁻⁷ M 8.8 x 10⁻⁷ M

$$Ksp = [Ag^+] [Br^-] = (8.8 \times 10^{-7} \text{ M})^2 = 7.7 \times 10^{-13}$$

If 1.64 x 10⁻⁶ g of $Zn(OH)_2$ can dissolve in 1.0 mL of water, what is the Ksp?

If 1.64 x 10⁻⁶ g of $Zn(OH)_2$ can dissolve in 1.0 mL of water, what is the Ksp?

 $(1.64 \times 10^{-6} \text{g/1.omL}) \times (1 \text{mol/99.38g}) \times (1000 \text{mL/1L}) = 1.65 \times 10^{-5} \text{ M}$

If 1.64 x 10⁻⁶ g of Zn(OH)₂ can dissolve in 1.0 mL of water, what is the Ksp?

 $(1.64 \times 10^{-6} \text{g/1.omL}) \times (1 \text{mol/99.38g}) \times (1000 \text{mL/1L}) = 1.65 \times 10^{-5} \text{ M}$

$$Zn(OH)_{2(s)}$$
 $=$ $Zn^{+2}_{(aq)}$ + $2OH^{-}_{(aq)}$

If 1.64 x 10⁻⁶ g of $Zn(OH)_2$ can dissolve in 1.0 mL of water, what is the Ksp?

 $(1.64 \times 10^{-6} \text{g/1.omL}) \times (1 \text{mol/99.38g}) \times (1000 \text{mL/1L}) = 1.65 \times 10^{-5} \text{ M}$

$$Zn(OH)_{2(s)}$$
 $=$ $Zn^{+2}_{(aq)}$ + $2OH^{-}_{(aq)}$
1.65 x 10⁻⁵ M 1.65 x 10⁻⁵ M 3.30 x 10⁻⁵ M

If 1.64 x 10⁻⁶ g of Zn(OH)₂ can dissolve in 1.0 mL of water, what is the Ksp?

 $(1.64 \times 10^{-6} \text{g/1.omL}) \times (1 \text{mol/99.38g}) \times (1000 \text{mL/1L}) = 1.65 \times 10^{-5} \text{ M}$

$$Zn(OH)_{2(s)}$$
 $=$ $Zn^{+2}_{(aq)}$ + $2OH^{-}_{(aq)}$
1.65 x 10⁻⁵ M 1.65 x 10⁻⁵ M 3.30 x 10⁻⁵ M

 $Ksp = [Zn^{+2}][OH^{-}]^{2} = (1.65 \times 10^{-5} M)(3.30 \times 10^{-5} M)^{2} = 1.8 \times 10^{-14}$

Type 2 (Find ion concentrations from Ksp value)

What is the concentration of Ca^{+2} and CO_3^{-2} ions if the Ksp for $CaCO_3$ is 4.8 x 10⁻⁹?

①
$$CaCO_{3(s)} \longrightarrow Ca^{+2}_{(aq)} + CO_{3}^{-2}_{(aq)}$$

② Let
$$[CaCO_3] = X$$

③
$$CaCO_{3(s)}$$
 $Ca^{+2}_{(aq)} + CO_{3}^{-2}_{(aq)}$
 X X X

$$\bigcirc$$
 4.8 x 10⁻⁹ = [X][X]

$$4.8 \times 10^{-9} = X^2$$

$$X = 6.9 \times 10^{-5} \text{ M}$$
 Therefore; $[Ca^{+2}] = [CO_3^{-2}] = 6.9 \times 10^{-5} \text{ M}$

The Ksp for MgF_2 is 6.4 x 10⁻⁹.

a) What is the $[Mg^{+2}]$ and $[F^{-}]$?

$$MgF_{2(s)} \longrightarrow Mg^{+2}_{(aq)} + 2F_{(aq)} \quad Ksp = [Mg^{+2}] [F^{-}]^{2}$$
 $X \qquad X \qquad 2X$

$$6.4 \times 10^{-9} = [Mg^{+2}] [F^{-}]^{2}$$

 $6.4 \times 10^{-9} = [X] [2X]^{2}$

$$6.4 \times 10^{-9} = 4X^3$$

1.2 x 10⁻³ M = X Therefore; $[Mg^{+2}] = 1.2 \times 10^{-3} M$ and $[F^{-}] = 2.4 \times 10^{-3} M$

b) What is the molar solubility of MgF₂?

Molar solubility is mol per litre or M.

Therefore, molar solubility of MgF₂ is simply 1.2 x 10⁻³ M

c) What is the solubility of MgF₂ in g/L?

 $1.2 \times 10^{-3} \text{ mol/L } \times 62.3 \text{ g/mol} = 7.3 \times 10^{-2} \text{ g/L}$

Do Questions: #40 page 91; #41 page 92; #42-55 page 95