CHEMISTRY 11
 UNIT 4 - CHEMICAL REACTIONS \& STOICHIOMETRY - REVIEW PACKAGE

STOICHIOMETRY I:

1. Given the following balanced equations, solve the stoichiometric problems (PLO-D5)
a. Ammonia combines with oxygen gas in the following reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}
$$

i. How many moles of NH_{3} are needed to combine with 3.57 moles of O_{2} gas?

2.86 moles NH_{3}

ii. If 1.5 grams of NO is produced in the above reaction, how many grams of NH_{3} were reacted?

$0.85 \mathrm{~g} \mathrm{NH}_{3}$

b. For the double replacement reaction:

$$
3 \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{FeCl}_{3} \rightarrow 6 \mathrm{NaCl}+\mathrm{Fe}_{2}(\mathrm{CO})_{3}
$$

i. How many grams of NaCl will be produced from the reaction of 0.080 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with excess FeCl_{3} ?

9.4 g NaCl

ii. How many grams of FeCl_{3} would be needed to react with 4.2 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?

$4.3 \mathrm{~g} \mathrm{FeCl}_{3}$

c. For the following reaction:

$$
2 \mathrm{Si}_{4} \mathrm{H}_{10(\mathrm{~s})}+13 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{SiO}_{2(\mathrm{~s})}+10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

i. What volume of oxygen (STP) is required to react with 204.0 g of $\mathrm{Si}_{4} \mathrm{H}_{10}$?

$242.7 \mathrm{~L} \mathrm{O}_{2}$

ii. What mass of SiO_{2} is formed when 345.0 g of $\mathrm{H}_{2} 0$ are formed?

$921.5 \mathrm{~g} \mathrm{SiO}_{2}$

iii. How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are formed when 17.92 L of O_{2} are used at STP?
3.705×10^{23} molecules of $\mathbf{H}_{2} \mathrm{O}$
iv. How many moles of $\mathrm{Si}_{4} \mathrm{H}_{10}$ are needed to just react with 1.204×10^{26} molecules of oxygen gas?
30.77 mole Si $\mathbf{H}_{4} \mathbf{H}_{10}$
d. For the following balanced equation:

$$
3 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Fe}(\mathrm{OH})_{3(\mathrm{aq})} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{FeCl}_{3(\mathrm{aq})}
$$

i. It takes 19.56 mL of 0.50 M HCl to titrate a 25.0 mL sample of a solution of $\mathrm{Fe}(\mathrm{OH})_{3}$. Calculate the $\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]$?

$0.13 \mathrm{M} \mathrm{Fe}(\mathrm{OH})_{3}$

ii. What mass of $\mathrm{Fe}(\mathrm{OH})_{3}$ is needed to completely react with 10.0 mL of 0.50 M HCl solution?

$0.18 \mathrm{~g} \mathrm{Fe}(\mathrm{OH}) 3$

iii. What volume of 0.50 M HCl is required to titrate a 21.36 gram sample of iron (III) hydroxide?

1.2 L HCl

e. For the following balanced equation:

$$
3 \mathrm{Mg}+2 \mathrm{AlCl}_{3} \rightarrow 3 \mathrm{MgCl}_{2}+2 \mathrm{Al}
$$

i. How many grams of MgCl_{2} would be formed if 50.0 mL of $0.200 \mathrm{M} \mathrm{AlCl}_{3}$ is reacted with excess Mg ?

$1.43 \mathbf{g ~ M g C l}_{2}$

ii. How many mL of $0.150 \mathrm{M} \mathrm{AlCl}_{3}$ would be needed to react completely with 2.00 g of Mg ?

$3.66 \times 10^{3} \mathrm{~mL}$ of AlCl 3

STOICHIOMETRY II:

10. Given the following balanced equations, solve the stoichiometric problems (PLO-D5)
a. In a chemical reaction 6.92 g of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ is combined with 4.54 g of oxygen gas.

$$
2 \mathrm{Fe}_{2} \mathrm{~S}_{3}+9 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{SO}_{2}
$$

i. Which reactant is the LIMITING reagent?

Oxygen gas is limiting reagent

ii. How many grams of the EXCESS reactant will be left over after the reaction is complete?

0.365 g of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$

iii. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ can be formed in this reaction?

$0.0315 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$

b. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{SiO}_{2}+10 \mathrm{C} \rightarrow \mathrm{P}_{4}+6 \mathrm{CaSiO}_{3}+10 \mathrm{CO}$
 reacted according to the following balanced equation?

Limiting reactant: Carbon

8.06 g of Carbon

c. Given the balanced equation:

$$
\mathrm{Al}_{2} \mathrm{C}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4(\mathrm{~g})}
$$

i. If 34.5 grams of $\mathrm{Al}_{2} \mathrm{C}_{6}$ is mixed with 72.0 grams of water, which reactant is in excess? Show by calculations.

Water $\left(\mathbf{H}_{2} \mathrm{O}\right)$

ii. If 34.5 grams of $\mathrm{Al}_{2} \mathrm{C}_{6}$ is mixed with 72.0 grams of water, what mass of $\mathrm{Al}(\mathrm{OH})_{3}$ is formed?

$42.7 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$

iii. If 34.5 grams of $\mathrm{Al}_{2} \mathrm{C}_{6}$ is mixed with 72.0 grams of water, what volume of CH_{4} is formed at STP?

$13.1 \mathrm{~g} \mathrm{CH}_{4}$

d. Given the equation:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

When 51.0 grams of NH_{3} is burned in an excess of oxygen, 52.65 g of water are produced.
i. Calculate the theoretical yield of $\mathrm{H}_{2} \mathrm{O}$.
$81.0 \mathrm{~g} \mathrm{H}_{\mathbf{2}} \mathrm{O}$
ii. Calculate the $\%$ yield of $\mathrm{H}_{2} \mathrm{O}$. 65\%
e. Given the equation:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

When 4.0 grams of hydrogen gas is combined with an excess of nitrogen, a 92% yield of NH_{3} is obtained.
i. Calculate the theoretical yield of NH_{3}

$2.3 \times 10^{1} \mathrm{~g} \mathrm{NH}_{3}$

ii. Calculate the actual yield of NH_{3}

$2.1 \times 10^{1} \mathrm{~g} \mathrm{NH}_{3}$

f. For the following reaction:

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

i. How many grams of aluminum oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, would be expected to form in the reaction of 15.0 g Al with 18.43 g of oxygen gas?

$28.3 \mathbf{g ~ A l}_{2} \mathrm{O}_{3}$

ii. If the actual yield of $\mathrm{Al}_{2} \mathrm{O}_{3}$ produced in the reaction was only $22.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$, what would the PERCENT YIELD of the reaction be?
79.2\%

