<u>CHEMISTRY 11</u> <u>UNIT 4 - CHEMICAL REACTIONS & STOICHIOMETRY - REVIEW PACKAGE</u>

STOICHIOMETRY I:

1. Given the following balanced equations, solve the stoichiometric problems (PLO-D5)

a. Ammonia combines with oxygen gas in the following reaction:

$$4 \text{ NH}_3 + 5\text{O}_2 \rightarrow 6\text{H}_2\text{O} + 4\text{NO}$$

i. How many moles of NH_3 are needed to combine with 3.57 moles of O_2 gas?

2.86 moles NH₃

ii. If 1.5 grams of NO is produced in the above reaction, how many grams of NH₃ were reacted?

0.85 g NH₃

b. For the double replacement reaction:

 $3Na_2CO_3 + 2FeCl_3 \rightarrow 6NaCl + Fe_2(CO)_3$

i. How many grams of NaCl will be produced from the reaction of 0.080moles of Na₂CO₃ with excess FeCl₃?

9.4 g NaCl

ii. How many grams of FeCl₃ would be needed to react with 4.2g of Na₂CO₃?

4.3 g FeCl₃

c. For the following reaction:

 $2 \operatorname{Si}_{4}\operatorname{H}_{10}(s) + 13 \operatorname{O}_{2}(g) \rightarrow 8 \operatorname{Si}_{2}(s) + 10 \operatorname{H}_{2}O(g)$

i. What volume of oxygen (STP) is required to react with $204.0 \text{ g of } Si_4H_{10}$?

$242.7 \ L \ O_2$

ii. What mass of SiO_2 is formed when 345.0 g of H_20 are formed?

921.5 g SiO₂

iii. How many molecules of H_2O are formed when 17.92 L of O_2 are used at STP?

$3.705 \ x \ 10^{23} \ molecules \ of \ H_2O$

Chemistry 11

Unit 4 Review Package

iv. How many moles of Si₄H₁₀ are needed to just react with 1.204 x 10²⁶ molecules of oxygen gas?

30.77 mole Si₄H₁₀

d. For the following balanced equation:

 $3 \text{ HCl}_{(aq)} + \text{Fe}(OH)_{3 (aq)} \rightarrow 3 \text{ H}_2O_{(l)} + \text{Fe}Cl_{3 (aq)}$

i. It takes 19.56 mL of 0.50 M HCl to titrate a 25.0 mL sample of a solution of Fe(OH)₃. Calculate the [Fe(OH)₃]?

0.13 M Fe(OH)₃

ii. What mass of Fe(OH)₃ is needed to completely react with 10.0 mL of 0.50M HCl solution?

0.18 g Fe(OH)₃

- iii. What volume of 0.50M HCl is required to titrate a 21.36 gram sample of iron (III) hydroxide?1.2 L HCl
- e. For the following balanced equation:

$$3Mg + 2AlCl_3 \rightarrow 3MgCl_2 + 2Al$$

i. How many grams of MgCl₂ would be formed if 50.0mL of 0.200M AlCl₃ is reacted with excess Mg?

1.43 g MgCl₂

ii. How many mL of 0.150M AlCl₃ would be needed to react completely with 2.00g of Mg?

3.66x10³ mL of AlCl3

STOICHIOMETRY II:

- 10. Given the following balanced equations, solve the stoichiometric problems (PLO-D5)
 - a. In a chemical reaction 6.92g of Fe_2S_3 is combined with 4.54g of oxygen gas.

$$2Fe_2S_3 + 9O_2 \rightarrow 2Fe_2O_3 + 6 SO_2$$

i. Which reactant is the LIMITING reagent?

Oxygen gas is limiting reagent

0.365 g of Fe₂S₃

iii. How many grams of Fe₂O₃ can be formed in this reaction?

0.0315 g Fe₂O₃

b. $Ca_3(PO_4)_2 + 6 SiO_2 + 10C \rightarrow P_4 + 6CaSiO_3 + 10CO$

What mass of P_4 will be produced when 41.5g of $Ca_3(PO_4)_2$, 26.3g of SiO₂, and 7.80g of C are reacted according to the following balanced equation?

Limiting reactant: Carbon

8.06 g of Carbon

c. Given the balanced equation:

 $Al_2C_6 + 6 H_2O \rightarrow 2 Al(OH)_3 + 3CH_{4(g)}$

i. If 34.5 grams of Al_2C_6 is mixed with 72.0 grams of water, which reactant is in excess? Show by calculations.

Water (H₂O)

ii. If 34.5 grams of Al_2C_6 is mixed with 72.0 grams of water, what mass of $Al(OH)_3$ is formed?

42.7 g Al(OH)₃

iii. If 34.5 grams of Al_2C_6 is mixed with 72.0 grams of water, what volume of CH_4 is formed at STP?

13.1 g CH₄

d. Given the equation:

$$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

When 51.0 grams of NH₃ is burned in an excess of oxygen, 52.65 g of water are produced.

i. Calculate the theoretical yield of H₂O.

81.0 g H₂O

65%

e. Given the equation:

 $N_2 + 3 H_2 \rightarrow 2 NH_3$

When 4.0 grams of hydrogen gas is combined with an excess of nitrogen, a 92% yield of NH_3 is obtained.

i. Calculate the theoretical yield of NH₃

2.3x10¹ g NH₃

ii. Calculate the actual yield of NH_3

2.1x10¹ g NH₃

f. For the following reaction:

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$

i. How many grams of aluminum oxide, Al₂O₃, would be expected to form in the reaction of 15.0g Al with 18.43g of oxygen gas?

28.3 g Al₂O₃

ii. If the actual yield of Al₂O₃ produced in the reaction was only 22.4g Al₂O₃, what would the PERCENT YIELD of the reaction be?

79.2%