## Mole Concept Review

1. Review the following terms: arbitrary mass, Avogadro's hypothesis, mole, atomic mass, molar mass, molar volume, STP, density, empirical formula, molecular formula, empirical mass, concentration, dilution, molarity.
2. Calculate the molar mass of each of the following.
a) $\quad \mathrm{NCl}_{3}$
b) $\quad \mathrm{FeSO}_{4}$
c) $\mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{4}$
d) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
e) $\quad \mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}$
f) $\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}$
3. Calculate the molar mass of each of the following.
a) $\mathrm{NiSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$
4. Calculate the mass of the following.
a) $\quad 4.50 \mathrm{~mol}$ of $\mathrm{PCl}_{3}$
b) 0.0215 mol of $\mathrm{Pb}(\mathrm{OH})_{4}$
c) $\quad 5.64 \times 10^{-5} \mathrm{~mol}$ of $\mathrm{AuCl}_{3}$
d) $\quad 6.82 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{ZnSO}_{4}$
5. Calculate the number of moles in the following.
a) 85.6 g of CaO
b) 0.547 mg of $\mathrm{CuSO}_{4}$
c) 6.48 kg of $\mathrm{KMnO}_{4}$
d) $\quad 12.8 \mathrm{~g}$ of $\mathrm{NH}_{3}$
6. Calculate the molar mass of each of the substances mentioned in the following.
a) A 0.00496 mol sample of cholesterol has a mass of 1.894 g .
b) The mass of a $3.44 \times 10^{-5} \mathrm{~mol}$ sample of a particular protein has a mass of 74.8 g .
7. What is STP and what are the experimental conditions of STP?
8. Calculate the volume at STP occupied by the following.
a) $\quad 24.8 \mathrm{~mol}$ of $\mathrm{NH}_{3}$
b) 0.0861 mol of HCl
9. Calculate the number of moles in the following gases at STP.
a) $\quad 64.8 \mathrm{~L}$ of $\mathrm{Xe}_{(\mathrm{g})}$
b) $\quad 645 \mathrm{~mL}$ of $\mathrm{SO}_{2(\mathrm{~g})}$
10. How many atoms are contained in the following.
a) 1 molecule of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
b) 15 molecules of $\mathrm{NH}_{4} \mathrm{Cl}$
c) $\quad 2.56 \mathrm{~mol}$ of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
d) 0.0871 mol of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
11. Find the mass, in grams, of each of the following.
a) 1 Pb atom
b) 235 Ag atoms
c) $4.51 \times 10^{22} \mathrm{H}_{2} \mathrm{O}$ molecules
d) $5.62 \times 10^{18} \mathrm{Fe}(\mathrm{OH})_{3}$ molecules
e) $\quad 17.8 \mathrm{~L}^{\text {of } \mathrm{HF}_{(\mathrm{g})} \text { at STP }}$
f) 85.4 mL of $\mathrm{O}_{2(\mathrm{~g})}$ at STP
12. How many atoms are contained in each of the following?
a) $\quad 60.5 \mathrm{~g}$ of $\mathrm{AlCl}_{3}$
b) $\quad 125.0 \mathrm{~g}$ of $\mathrm{CaBr}_{2}$
c) $\quad 2.87 \times 10^{-5} \mathrm{~g}$ of $\mathrm{FeSO}_{4}$
d) 84.6 mL of $\mathrm{HCl}_{(\mathrm{g})}$ at STP
e) $\quad 2.87 \mathrm{~L}$ of $\mathrm{H}_{2(\mathrm{~g})}$ at STP
f) $\quad 867.5 \mathrm{~mL}$ of $\mathrm{NH}_{3(\mathrm{~g})}$ at STP
13. What volume at STP is occupied by each of the following?
a) $8.27 \times 10^{20}$ molecules of $\mathrm{O}_{2(\mathrm{~g})}$
b) $\quad 5.67 \times 10^{23}$ molecules of $\mathrm{NH}_{3(\mathrm{~g})}$
c) $\quad 125.0 \mathrm{~g}$ of $\mathrm{Cl}_{2(\mathrm{~g})}$
d) $\quad 0.725 \mathrm{~g}$ of $\mathrm{CO}_{2(\mathrm{~g})}$
14. Calculate the percentage composition of the following.
a) $\mathrm{NaHCO}_{3}$
b) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
c) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
15. Calculate the percentage composition of the bold species in each of the following.
a) $\mathrm{Cr}\left(\mathbf{N O}_{3}\right)_{6} \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathbf{9} \mathbf{H}_{\mathbf{2}} \mathrm{O}$
c) $\mathrm{Al}_{2}\left(\mathbf{S O}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{Ce}_{2}\left(\mathbf{C}_{2} \mathbf{O}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
16. Find the empirical formula for the following compounds.
a) $12.6 \% \mathrm{Li}, 29.2 \% \mathrm{~S}, 58.2 \% \mathrm{O}$
c) $38.8 \% \mathrm{Fe}, 16.7 \% \mathrm{C}, 44.5 \% \mathrm{O}$
b) $27.4 \% \mathrm{Na}, 1.2 \% \mathrm{H}, 14.3 \% \mathrm{C}$,
d) $\quad 24.7 \% \mathrm{~K}, 34.7 \% \mathrm{Mn}, 40.5 \% \mathrm{O}$ 57.1\% O
17. A gas has the empirical formula $\mathrm{CH}_{2}$. If 0.550 L of the gas at STP has a mass of 3.44 g , what is the molecular formula? $\mathrm{C}_{10} \mathrm{H}_{20}$
18. A sample of gas is analyzed and found to contain $33.0 \% \mathrm{Si}$ and $67.0 \% \mathrm{~F}$. If the gas has a density of $7.60 \mathrm{~g} / \mathrm{L}$ at STP, what is the molecular formula? $\mathrm{Si}_{2} F_{6}$
19. Caproic acid, the substance responsible for the aroma of dirty gym socks and running shoes, contains carbon, hydrogen and oxygen. On combustion analysis, a 0.450 g sample
 caproic acid is 116.2 , what is the molecular formula? $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$
20. Calculate the molar concentration of the following solutions.
a) 0.578 mol of NaCl in 52.0 mL of solution ( 11.1 M )
b) 5.68 mol of $\mathrm{NaHCO}_{3}$ in 12.8 L of solution $(0.444 \mathrm{M})$
c) 50.0 g of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ in 150.0 mL of solution $(1.38 \mathrm{M})$
d) 27.8 g of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in 200.0 mL of solution ( 0.848 M )
21. Calculate the mass of solute needed to make the following solutions.
a) $\quad 125.0 \mathrm{~mL}$ of 0.0750 M KOH , from solid $\mathrm{KOH}(0.526 \mathrm{~g})$
b) $\quad 500.0 \mathrm{~mL}$ of $0.120 \mathrm{M} \mathrm{FeCl}_{3}$, from solid $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(16.2 \mathrm{~g})$
c) $\quad 650.0 \mathrm{~mL}$ of $0.350 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, from solid $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(75.3 \mathrm{~g})$
22. What is the concentration of the solution that results when 250.0 mL of water is added to 550.0 mL of 3.50 M NaOH ? ( 2.41 M )
23. What is the concentration of the solution that results when 50.0 mL of water is added to 250.0 mL of 0.850 M HCl ? ( 0.708 M )
24. If 500.0 mL of 0.100 M LiOH is boiled down to 200.0 mL , what is the concentration? ( 0.250 M)
25. If 1.50 L of 0.0850 M NaCl is boiled down to 450.0 mL , what is the concentration? (0.283 M)
26. Calculate the concentration of the solution that results when 250.0 mL of 0.750 M NaCl is mixed with 100.0 mL of 0.250 M NaCl . ( 0.607 M )
27. Calculate the concentration of the solution that results when 350.0 mL of $1.25 \mathrm{M} \mathrm{FeCl}_{3}$ is mixed with 150.0 mL of $0.250 \mathrm{M} \mathrm{FeCl}_{3}$. ( 0.950 M )
28. What is the resulting concentration when 500.0 mL of 0.250 M NaCl is mixed with 250.0 mL of 0.450 M NaCl and the mixture is boiled down to 400.0 mL ? ( 0.594 M )
29. If 250.0 mL of solution A containing 28.0 g of LiOH is mixed with 500.0 mL of solution B containing 56.0 g of LiOH and the resulting solution is boiled down to 600.0 mL , what is the concentration? ( 5.86 M )
30. Calculate the molarity of pure water if density $=1.000 \mathrm{~g} / \mathrm{mL}$. ( 55.6 M)
(2) $120.5 \mathrm{~g} / \mathrm{mol}, 151.9 \mathrm{~g} / \mathrm{mol}, 605.2 \mathrm{~g} / \mathrm{mol}, 342.3 \mathrm{~g} / \mathrm{mol}, 294.7 \mathrm{~g} / \mathrm{mol}, 233.7 \mathrm{~g} / \mathrm{mol}$; (3) $280.8 \mathrm{~g} / \mathrm{mol}, 510.7$ $\mathrm{g} / \mathrm{mol}, 400.0 \mathrm{~g} / \mathrm{mol}, 295.5 \mathrm{~g} / \mathrm{mol}$; (4) $618.8 \mathrm{~g}, 5.92 \mathrm{~g}, 0.0171 \mathrm{~g}, 1.10 \mathrm{~g}$; (5) $1.53 \mathrm{~mol}, 3.43 \times 10^{-6} \mathrm{~mol}, 41.0$ $\mathrm{mol}, 0.753 \mathrm{~mol}$; (6) $381.9 \mathrm{~g} / \mathrm{mol}, 2.17 \times 10^{6} \mathrm{~g} / \mathrm{mol}$; (7) standard temperature and pressure, 101.3 kPa and $0^{\circ} \mathrm{C}$; (8) $555.5 \mathrm{~L}, 1.93 \mathrm{~L}$; (9) $2.89 \mathrm{~mol}, 0.0288 \mathrm{~mol}$; (10) $8,90,3.08 \times 10^{25}, 1.10 \times 10^{24}$; (11) $3.44 \times 10^{-22} \mathrm{~g}$, $4.21 \times 10^{-20} \mathrm{~g}, 1.35 \mathrm{~g}, 9.97 \times 10^{-4} \mathrm{~g}, 15.9 \mathrm{~g}, 0.12 \mathrm{~g}$; (12) $1.09 \times 10^{24}, 1.13 \times 10^{24}, 6.82 \times 10^{17}, 4.55 \times 10^{21}$, $1.54 \times 10^{23}, 9.33 \times 10^{22}$; (13) $0.0308 \mathrm{~L}, 21.1 \mathrm{~L}, 39.4 \mathrm{~L}, 0.369 \mathrm{~L}$; (14) $27.4 \% \mathrm{Na}, 1.2 \% \mathrm{H}, 14.3 \% \mathrm{C}, 57.1 \% \mathrm{O}$; $27.9 \% F e, 24.1 \% S, 48.0 \%$ O, $25.4 \% \mathrm{Cu}, 12.9 \% S, 57.7 \%$ O, $4.0 \% H$; $19.9 \% F e, 17.1 \%$ S, $59.8 \% 0,3.2 \% H$; (15) $67.8 \%, 28.8 \%, 43.3 \%, 37.4 \%$; (16) $\mathrm{Li}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}, \mathrm{FeC}_{2} \mathrm{O}_{4}, \mathrm{KMnO}_{4}$;
