\qquad Date \qquad Blk \qquad

$4.11 \mathrm{pH}, \mathrm{pOH}$ and pl Values

a) The pH Scale

i) A logarithmic scale showing strength of acids and bases.
[OH^{-}]
$10^{-14} 10^{-13} 10^{-12}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$14 \quad 13 \quad 12$
pOH
ii) Every decrease in pH of $1=$ Increase in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$by 10

b) What is pH ?

i) Measure of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$present in a solution
ii) Solution is acidic when pH less than 7 (or when pOH greater than 7)
iii) $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
iv) What is pH when the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.2 \times 10^{-3} \mathrm{M}$?

$$
\mathrm{pH}=-\log \left(1.2 \times 10^{-3}\right)=\mathbf{2 . 9 2}
$$

v) What is pH when the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.8 \times 10^{-8} \mathrm{M}$?

$$
\mathrm{pH}=-\log \left(4.8 \times 10^{-8}\right)=7.32
$$

vi) What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when the pH is 2.55 ?

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.55} \text { or }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-2.55)=\mathbf{2 . 8} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{M}
$$

vii) What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when the pH is 9.70 ?

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-9.70}=\mathbf{2 . 0} \times \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{M}
$$

\qquad Date \qquad Blk \qquad
Acids, Bases, Salts

c) What is pOH ?

i) Measure of $\left[\mathrm{OH}^{-}\right]$present in a solution
ii) Solution is basic when pOH less than 7 (pH greater than 7)
iii) $\mathbf{p O H}=-\log \left[\mathrm{OH}^{-}\right]$
iv) What is pOH when the $\left[\mathrm{OH}^{-}\right]=1.5 \times 10^{-1} \mathrm{M}$?

$$
\mathrm{pOH}=-\log \left(1.5 \times 10^{-1}\right)=0.82
$$

v) What is pOH when the $\left[\mathrm{OH}^{-}\right]=4.4 \times 10^{-4} \mathrm{M}$?

$$
\mathrm{pOH}=-\log \left(4.4 \times 10^{-4}\right)=3.36
$$

vi) What is the $\left[\mathrm{OH}^{-}\right]$when the pOH is 12.65 ?

$$
\left[\mathrm{OH}^{-}\right]=10^{-12.65}=2.2 \times 10^{-13} \mathrm{M}
$$

vii) What is the $\left[\mathrm{OH}^{-}\right]$when the pOH is 1.70 ?

$$
\left[\mathrm{OH}^{-}\right]=10^{-1.70}=2.0 \times 10^{-2} \mathrm{M}
$$

d) Relationship Between pH and pOH

i) $\mathrm{pH}+\mathrm{pOH}=14$
ii) What is the pH of a solution if the pOH is 10.2 ?

$$
\mathrm{pH}=14-10.2=\mathbf{3 . 8}
$$

iii) What is the $\left[\mathrm{OH}^{-}\right]$if the pH is 3.25 ?
$\mathrm{pOH}=14-3.25=10.75 \quad\left[\mathrm{OH}^{-}\right]=10^{-10.75}=\mathbf{1 . 8} \times \mathbf{1 0}^{-\mathbf{1 1}} \mathbf{M}$
iv) What is the pOH if the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.7 \times 10^{-4} \mathrm{M}$?
$\mathrm{pH}=-\log \left(1.7 \times 10^{-4}\right)=3.78 \quad \mathrm{pOH}=14-3.78=\mathbf{1 0 . 2 2}$
v) What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$if the $\left[\mathrm{OH}^{-}\right]=3.50 \times 10^{-5} \mathrm{M}$
$\mathrm{pOH}=-\log \left(3.50 \times 10^{-5}\right)=4.456$
$\mathrm{pH}=14-4.456=9.544$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-9.544}=\mathbf{2 . 8 6} \times \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{M}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}
$$

$$
\text { or } \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{3.50 \times 10^{-5}}=\mathbf{2 . 8 6} \times \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{M}
$$

\qquad
\qquad
\qquad
Acids, Bases, Salts
e) $p K$ Values
i) pK values are just for convenience!
ii) Observe the Pattern!
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
6=-\log \left[1.00 \times 10^{-6}\right]
$$

$\mathrm{pKw}=-\log [K w]$ $14=-\log \left[1.00 \times 10^{-14}\right]$
ii) $\mathbf{p K w}=14(p H+p O H=14$ or $p H+p O H=p K w)$
iii) Observe the Pattern!

$$
\begin{array}{ll}
\mathbf{p K a}=-\log [\mathbf{K a}] & 2.12=-\log \left[7.5 \times 10^{-3}\right] \\
\mathbf{p K b}=-\log [\mathbf{K b}] & 4.74=-\log \left[1.8 \times 10^{-5}\right]
\end{array}
$$

iv) $\mathbf{p K a}+\mathbf{p K b}=\mathbf{p K w}$

f) Significant Figures

i) In a pH (or pOH) value, only the numbers after the decimal are significant
ii) Example:

$$
\mathrm{pH}=2.465 \text { has } 3 \text { sig. figs. The " } 2 \text { " give the power of } 10 \ldots \text { not significant. }
$$

iii) Example:

$$
\mathrm{pH}=10.25 \text { has } 2 \text { sig. figs. }
$$

iv) Example: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.24 \times 10^{-3} \mathrm{M}$. What is pH ?

$$
\mathrm{pH}=-\log \left(1.24 \times 10^{-3}\right)=2.907
$$

v) Example: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.762 \times 10^{-6} \mathrm{M}$. What is pH ?

$$
\mathrm{pH}=-\log \left(1.762 \times 10^{-6}\right)=5.7540
$$

Do Questions: \#47 page 134; \#48 page 135; \#49-57 page 139-141
\qquad Date \qquad Blk \qquad Acids, Bases, Salts

g) Advanced pH and pOH Calculations

i) Example: 50.0 ml of 0.200 M NaOH is reacted with 30.0 ml of 0.250 M HCl . What is the pH of the resulting solution?

(1) $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
moles of acid or base in excess will determine the pH
(2) moles NaOH present $=0.200 \mathrm{M} \times 0.0500 \mathrm{~L}=0.0100$ moles moles HCl present $=0.250 \mathrm{M} \times 0.0300 \mathrm{~L}=0.00750$ moles
(3) NaOH is in excess by: $0.0100-0.00750=0.00250$ moles
(4) $[\mathrm{NaOH}]=\left[\mathrm{OH}^{-}\right]=0.00250$ moles $/(0.0300 \mathrm{~L}+0.0500 \mathrm{~L})=0.0312 \mathrm{M}$
(5) $\mathrm{pOH}=-\log [0.0312 \mathrm{M}]=1.506$
(6) $\mathrm{pH}=14-\mathrm{pOH}=14-1.506=\mathbf{1 2 . 4 9 4}$

ii) Example: Calculate the pH if 1.25 L of 0.300 M KOH is added to 0.500 L of $0.0900 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

(1) $2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
moles of acid or base in excess will determine the pH
(2) moles $\left[\mathrm{OH}^{-}\right]$present $=0.300 \mathrm{M} \times 1.25 \mathrm{~L}=0.375$ moles moles $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$present $=0.0900 \mathrm{M} \times 0.500 \mathrm{~L} \mathbf{x} 2=0.0900$ moles
(3) $\left[\mathrm{OH}^{-}\right]$is in excess by: $0.375-0.0900=0.285$ moles
(4) $\left[\mathrm{OH}^{-}\right]=0.285$ moles $/(1.25 \mathrm{~L}+0.500 \mathrm{~L})=0.163 \mathrm{M}$
(5) $\mathrm{pOH}=-\log [0.163 \mathrm{M}]=0.788$
(6) $\mathrm{pH}=14-0.788=\mathbf{1 3 . 2 1 2}$
\qquad
\qquad Blk \qquad
iii) Example: Calculate the pOH if 0.0300 L of $0.400 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is added to $\mathbf{0 . 2 5 0} \mathrm{L}$ of $\mathbf{0 . 1 2 5} \mathrm{M} \mathrm{HBr}$.
(1) $2 \mathrm{HBr}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ moles of acid or base in excess will determine the pH
(2) moles $\left[\mathrm{OH}^{-}\right]$present $=0.400 \mathrm{M} \times 0.0300 \mathrm{~L} \mathbf{x} 2=0.0240$ moles moles $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$present $=0.125 \mathrm{M} \times 0.250 \mathrm{~L}=0.0312$ moles
(3) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is in excess by: $0.0312-0.0240=0.00720$ moles
(4) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.00720$ moles $/(0.250 \mathrm{~L}+0.0300 \mathrm{~L})=0.0257 \mathrm{M}$
(5) $\mathrm{pH}=-\log [0.0257 \mathrm{M}]=1.590$
(6) $\mathrm{pOH}=14-1.590=\mathbf{1 2 . 4 1 0}$
iv) Example: How many grams of NaOH must be added to 0.800 L of 0.0400 M HBr to change the pH to 7.00 ? (Assume no volume change from adding NaOH)
(1) $\mathrm{NaOH}+\mathrm{HBr} \rightarrow \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}$
(2) want $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7}=0.0000001 \mathrm{M}$
(3) current $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0400 \mathrm{M}$
(4) change in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0400-0.0000001=0.0399 \mathrm{M}$
(5) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=0.0399 \mathrm{M}$
(6) $0.0399 \mathrm{M} \times 0.800 \mathrm{~L}=0.0320$ moles NaOH
(7) 0.0320 moles $\mathrm{x} 40 \mathrm{~g} / \mathrm{mol}=\mathbf{1 . 2 8} \mathbf{g ~ N a O H}$

