4.11 pH, pOH and pK Values

a) The pH Scale

i) A logarithmic scale showing strength of acids and bases.

 $10^{-14} \ 10^{-13} \ 10^{-12}$

 $[H_3O^+]$

[OH.]

ii) Every decrease in pH of 1 = Increase in $[H_3O^+]$ by 10

b) What is pH?

- i) Measure of [H₃O⁺] present in a solution
- ii) Solution is acidic when pH less than 7 (or when pOH greater than 7)
- iii) $pH = -log[H_3O^+]$
- iv) What is pH when the $[H_3O^+] = 1.2 \times 10^{-3} \text{ M}$?

$$pH = -log(1.2 \times 10^{-3}) = 2.92$$

v) What is pH when the $[H_3O^+] = 4.8 \times 10^{-8} M$?

$$pH = -log(4.8 \times 10^{-8}) = 7.32$$

vi) What is the $[H_3O^+]$ when the pH is 2.55?

$$[H_3O^+] = 10^{-2.55}$$
 or $[H_3O^+] = antilog(-2.55) = 2.8 \times 10^{-3} M$

vii) What is the $[H_3O^+]$ when the pH is 9.70?

$$[H_3O^+] = 10^{-9.70} = 2.0 \text{ x } 10^{-10} \text{ M}$$

c) What is pOH?

- i) Measure of [OH-] present in a solution
- ii) Solution is basic when pOH less than 7 (pH greater than 7)
- iii) $pOH = -log[OH^-]$
- iv) What is pOH when the $[OH^{-}] = 1.5 \times 10^{-1} \text{ M}$?

$$pOH = -log(1.5 \times 10^{-1}) = 0.82$$

v) What is pOH when the $[OH^{-}] = 4.4 \times 10^{-4} \text{ M}$?

$$pOH = -log(4.4 \times 10^{-4}) = 3.36$$

vi) What is the [OH⁻] when the pOH is 12.65?

$$[OH^{-}] = 10^{-12.65} = 2.2 \times 10^{-13} M$$

vii) What is the [OH-] when the pOH is 1.70?

$$[OH^{-}] = 10^{-1.70} = 2.0 \times 10^{-2} M$$

d) Relationship Between pH and pOH

- i) pH + pOH = 14
- ii) What is the pH of a solution if the pOH is 10.2? pH = 14 - 10.2 = 3.8
- iii) What is the [OH-] if the pH is 3.25?

$$pOH = 14 - 3.25 = 10.75$$
 $[OH^{-}] = 10^{-10.75} = 1.8 \times 10^{-11} M$

iv) What is the pOH if the $[H_3O^+] = 1.7 \times 10^{-4} \text{ M}$?

$$pH = -log(1.7 \times 10^{-4}) = 3.78 \quad pOH = 14 - 3.78 = 10.22$$

v) What is the $[H_3O^+]$ if the $[OH^-] = 3.50 \times 10^{-5} M$

$$pOH = -log(3.50 \times 10^{-5}) = 4.456$$

$$[H_3O^+][OH^-] = Kw$$

$$pH = 14 - 4.456 = 9.544$$

or
$$[H_3O^+] = \frac{1.00 \times 10^{-14}}{3.50 \times 10^{-5}} = 2.86 \times 10^{-10} M$$

$$[H_3O^+] = 10^{-9.544} = 2.86 \text{ x } 10^{-10} \text{ M}$$

e) pK Values

Acids, Bases, Salts

- i) pK values are just for convenience!
- ii) Observe the Pattern!

$$pH = -log[H_3O^+]$$

$$6 = -\log[1.00 \times 10^{-6}]$$

$$pKw = -log[Kw]$$

$$pKw = -log[Kw]$$
 14 = $-log[1.00 \times 10^{-14}]$

ii) **pKw** = **14**
$$(pH + pOH = 14 \text{ or } pH + pOH = pKw)$$

iii) Observe the Pattern!

$$pKa = -log[Ka]$$

$$2.12 = -\log[7.5 \times 10^{-3}]$$

$$pKb = -log[Kb]$$

$$4.74 = -\log[1.8 \times 10^{-5}]$$

iv)
$$pKa + pKb = pKw$$

f) Significant Figures

- i) In a pH (or pOH) value, only the numbers after the decimal are significant
- ii) Example:

$$pH = 2.465$$
 has 3 sig. figs. The "2" give the power of 10....not significant.

iii) Example:

$$pH = 10.25$$
 has 2 sig. figs.

iv) Example: $[H_3O^+] = 1.24 \times 10^{-3} \text{ M}$. What is pH?

$$pH = -log(1.24 \times 10^{-3}) = 2.907$$

v) Example: $[H_3O^+] = 1.762 \times 10^{-6} M$. What is pH?

$$pH = -log(1.762 \times 10^{-6}) = 5.7540$$

g) Advanced pH and pOH Calculations

i) Example: 50.0ml of 0.200 M NaOH is reacted with 30.0ml of 0.250 M HCl. What is the pH of the resulting solution?

 \bigcirc NaOH + HCl \rightarrow NaCl + H₂O

moles of acid or base in excess will determine the pH

- ② moles NaOH present = 0.200M x 0.0500L = 0.0100 moles moles HCl present = 0.250M x 0.0300L = 0.00750 moles
- ③ NaOH is in excess by: 0.0100 0.00750 = 0.00250 moles
- \P [NaOH] = [OH⁻] = 0.00250 moles / (0.0300L + 0.0500L) = 0.0312 M
- \bigcirc pOH = $-\log[0.0312M] = 1.506$
- © pH = 14 pOH = 14 1.506 = 12.494

ii) Example: Calculate the pH if 1.25 L of 0.300 M KOH is added to 0.500 L of 0.0900 M H₂SO₄.

 \bigcirc 2KOH + H₂SO₄ \rightarrow K₂SO₄ + 2H₂O

moles of acid or base in excess will determine the pH

② moles $[OH^{-}]$ present = 0.300M x 1.25L = 0.375 moles moles $[H_{3}O^{+}]$ present = 0.0900M x 0.500L **x 2** = 0.0900 moles

1

cause each H₂SO₄ produces two H₃O⁺ 's

- ③ [OH⁻] is in excess by: 0.375 0.0900 = 0.285 moles
- $(0H^{-}) = 0.285 \text{ moles} / (1.25L + 0.500L) = 0.163 \text{ M}$
- \bigcirc pOH = $-\log[0.163M] = 0.788$
- © pH = 14 0.788 = 13.212

iii) Example: Calculate the pOH if 0.0300 L of 0.400 M Ca(OH)₂ is added to 0.250 L of 0.125 M HBr.

- - moles of acid or base in excess will determine the pH
- ② moles $[OH^-]$ present = 0.400M x 0.0300L **x 2** = 0.0240 moles moles $[H_3O^+]$ present = 0.125M x 0.250L = 0.0312 moles
- ③ $[H_3O^+]$ is in excess by: 0.0312 0.0240 = 0.00720 moles
- (4) $[H_3O^+] = 0.00720$ moles /(0.250L + 0.0300L) = 0.0257 M
- pH = $-\log[0.0257M] = 1.590$
- © pOH = 14 1.590 = 12.410
- iv) Example: How many grams of NaOH must be added to 0.800 L of 0.0400 M HBr to change the pH to 7.00? (Assume no volume change from adding NaOH)
- \bigcirc NaOH + HBr \rightarrow NaBr + H₂O
- ② want $[H_3O^+] = 10^{-7} = 0.0000001 \text{ M}$
- $\text{ }^{\circ}\text{ }$ change in $[\text{H}_3\text{O}^+] = 0.0400 0.0000001 = 0.0399 \text{ M}$
- $(H_3O^+) = [OH^-] = 0.0399 M$
- © 0.0399 M x 0.800 L = 0.0320 moles NaOH
- ⑦ 0.0320 moles x 40 g/mol = **1.28 g NaOH**