Equilibrium Practice Test \# 2

1. The slowest of the following reactions is:
A. $\quad \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{AgCl}_{(\mathrm{s})}$
B. $\quad \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
C. $\quad 3 \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq}) \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)}$
D. $\quad \mathbf{C u}_{(\mathrm{s})}+2 \mathbf{A g}^{+}{ }_{(\text {aq })} \rightarrow \mathbf{C u}^{2+}{ }_{(\text {aq })}+2 \mathbf{A g}_{(\mathrm{s})}$
2. The rate of a chemical reaction is equal to the slope of the line with axes labelled
x -axis
y-axis
A. time
rate
B. mass time
C. volume of gas time
D. time concentration
3. Consider the following reaction: $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+$ heat The diagram that represents the relationship between rate and temperature is:
A.

Temperature
B.

Temperature
4. Which of the following describes the energy of colliding particles as reacting molecules approach each other?

KE
PE

A.	decreases	increases
B.	increases	decreases
C.	decreases	remains constant
D.	remains constant	increases

5. The average kinetic energy per molecule can be increased by
A. adding a catalyst
B. increasing pressure
C. increasing temperature
D. increasing reactant concentration
6. Consider the following reaction: $\mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CH}_{4(\mathrm{~g})} \quad \Delta \mathrm{H}=-74.8 \mathrm{~kJ}$ Which of the following will cause an increase in the value of the Keq?
A. increasing $\left[\mathrm{H}_{2}\right]$
B. decreasing the volume
C. finely powdering the $\mathrm{C}_{(\mathrm{s})}$
D. decreasing the temperature
7. Consider the rate diagram for the following reaction: $2 \mathrm{HI}_{(\mathrm{g})} \nsim \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$

Time $\quad t_{1}$

Which of the following occurs at t_{1} ?
A. addition of H_{2}
B. addition of HI
C. addition of a catalyst
D. a decrease in volume
9. Chemical equilibrium is said to be dynamic because
A. the reaction proceeds quickly
B. the mass of the reactants is decreasing
C. the macroscopic properties are constant
D. both forward and reverse rates are occurring
10. Which equation has the largest value of Keq?
A. $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{(\mathrm{g})} \quad \Delta \mathrm{H}=21 \mathrm{~kJ}$
B. $\quad \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \rightleftarrows 2 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}+83 \mathrm{~kJ}$
C. $\quad \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftarrows \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\Delta \mathrm{H}=-240 \mathrm{~kJ}$
D. $\quad \mathrm{Ca}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
$\Delta H=-240 \mathrm{~kJ}$
11. The value of the Keq can be changed by
A. adding a catalyst
B. changing the temperature
C. changing the reactant concentration
D. changing the volume of the container
12. Consider the following equilibrium: $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows \mathrm{PCl}_{5(\mathrm{~g})}$

When 0.40 mole of PCl_{3} and 0.40 mole of Cl_{2} are placed in a 1.00 L container and allowed to reach equilibrium, 0.244 mole of PCl_{5} are present. From this information, the value of the Keq is

A, $\quad 0.10$
B. 0.30
C. 3.3
D. $\quad 10$
13. Consider the following equilibrium: $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows \mathrm{PCl}_{5(\mathrm{~g})} \quad \mathrm{Keq}=2.30$ A 1.0 L container is filled with 0.05 mole $\mathrm{PCl}_{5}, 1.0 \mathrm{~mole}_{\mathrm{PCl}_{3}}$, and 1.0 mole Cl_{2}. The system proceeds to the
A. left because the Trial Keq > Keq
B. left because the Trial Keq < Keq
C. right because the Trial Keq > Keq
D. right because the Trial Keq < Keq

