2.4 (extension) Equilibrium Systems: Solids and Liquids: Concentration Changes

- Solids and Liquids have constant concentrations, so increasing / decreasing concentrations of (s) and (l) will NOT cause a shift
- Only concentration changes in (g) and (aq) reactants and products will cause a shift

2.4 (extension) Equilibrium Systems in

a) What's Different with Solutions?

- i) solutions at equilibrium will follow all we learned about Le Chatelier's principle and gases from previous, but there is a bit more info required for dealing with concentration changes with solutions!
- ii) $Fe(NO_3)_{3 \text{ (aq)}} + KSCN_{\text{(aq)}}$ FeSCN ²⁺ $_{\text{(aq)}} + KNO_{3 \text{ (aq)}}$ New Fact 1: changing the concentration of some of the

substances in a solution equilibrium will NOT affect the equilibrium.

New Fact 2: we can change the concentration of just an ion (i.e.: Fe $^{3+}$) and not necessarily the whole substance (i.e.: Fe(NO $_3$) $_3$) to affect the equilibrium.

Lets now see how this works!

2.4(extension) Equilibrium Systems in Solution

iii) In complete ionic form, the above reaction is:

$$Fe^{3+}_{(aq)} + 3NO_{3(aq)}^{-} + K^{+}_{(aq)} + SCN^{-}_{(aq)}$$
 $FeSCN^{2+}_{(aq)} + K^{+}_{(aq)} + 3NO_{3(aq)}^{-}$

iv) Since ${}_{3}^{-}(aq)$ and ${}_{(aq)}^{+}$ appear on both sides of the equation, they can cancel out!

 $3NO_{3}^{-}_{(aq)}$ and $K^{+}_{(aq)}$ are spectator ions and play no part in the equilibrium.

v) The NET ionic equation is then:

$$Fe^{3+}_{(aq)} + SCN^{-}_{(aq)}$$
 FeSCN $^{2+}_{(aq)}$

2.4 (extension) Equilibrium Systems in

Solution

- vi) To explain Fact 1, changing the concentration of $\mathrm{KNO_3}$ will not affect the equilibrium.
- vii) To explain Fact 2, we can affect the equilibrium by just adding Fe $^{3+}$ or SCN- $^{-}$

b) Example Questions

i) Increasing the [Fe ³⁺] will shift the reaction to the
right, left, no change
ii) Decreasing the [FeSCN ²⁺] will shift the reaction to the
right, left, no change
iii) Decreasing the [KNO ₃] will shift the reaction to the
right, left, no change
iv) Adding some NaSCN will shift the reaction to the
SCN - right, left, no change