Worksheet \#8 Equilibrium Calculations

Solve each problem and show all of your work.

1. $\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathbf{H}_{2} \mathrm{SO}_{4(\mathrm{I})} \quad$ Do not count the liquid!!
At equilibrium $\left[\mathrm{SO}_{3}\right]=0.400 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=0.480 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=$
0.600M

Calculate the value of the equilibrium constant.

$$
\begin{aligned}
& \mathrm{Keq}=\frac{1}{\left[\mathrm{SO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& \mathrm{Keq}=\frac{1}{[0.400][0.480]}
\end{aligned}
$$

$$
\mathrm{Keq}=5.21
$$

2. At equilibrium at $100^{\circ} \mathrm{C}$, a 2.0 L flask contains:
0.075 mol of $\mathrm{PCl}_{5} \quad 0.050 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O} \quad 0.750 \mathrm{~mol} 0 \mathrm{HCl} \quad 0.500 \mathrm{~mol}$ of POCl_{3}

Calculate the Keq for the reaction:
$\mathbf{P C l}_{5}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})+\mathrm{POCl}_{3}(\mathrm{~g})$

$K e q=1.4$

3. \quad Keq $=798$ at $25^{\circ} \mathrm{C}$ for the reaction: $\mathbf{2 S O}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons \mathbf{2 S O}_{\mathbf{3}}(\mathrm{g})$.

In a particular mixture at equilibrium, $\left[\mathrm{SO}_{2}\right]=4.20 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=11.0 \mathrm{M}$. Calculate the equilibrium $\left[\mathrm{O}_{2}\right]$ in this mixture at $25^{\circ} \mathrm{C}$.
$\left[\mathrm{O}_{2}\right]=0.00860 \mathrm{M}$
4. Consider the following equilibrium:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
0.600 moles of SO_{2} and 0.600 moles of O_{2} are present in a 4.00 L flask at equilibrium at $100^{\circ} \mathrm{C}$. If the $\mathrm{Keq}=680$, calculate the SO_{3} concentration at $100^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{Keq}=\frac{\left[\mathrm{SO}_{3} \frac{2}{2}\right.}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \\
& 680=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left.[0.150]^{21} 0.150\right]} \\
& {\left[\mathrm{SO}_{3}\right]^{2}=(0.150)(0.150)^{2}(680)} \\
& {\left[\mathrm{SO}_{3}\right]=1.51 \mathrm{M}}
\end{aligned}
$$

5. Consider the following equilibrium:
$\mathbf{2} \mathbf{N O}_{\mathbf{2 (g)}} \quad \rightleftarrows \quad \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4 (\mathrm { g })}}$
2.00 moles of NO_{2} and 1.60 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ are present in a 4.00 L flask at equilibrium at $20^{\circ} \mathrm{C}$. Calculate the Keq at $20^{\circ} \mathrm{C}$.

$$
\mathrm{Keq}=1.60
$$

6. $\quad 2 \mathrm{SO}_{3(\mathrm{~g})} \underset{2}{\rightleftarrows} \quad 2 \mathrm{SO}_{2(\mathrm{~g})} \quad+\quad \mathbf{O}_{2(\mathrm{~g})}$
4.00 moles of SO_{2} and 5.00 moles O_{2} are present in a 2.00 L container at $100^{\circ} \mathrm{C}$ and are at equilibrium. Calculate the equilibrium concentration of SO_{3} and the number of moles SO_{3} present if the $\mathrm{Keq}=1.47 \times 10^{-3}$.

$$
\left[\mathrm{SO}_{3}\right]=82.5 \mathrm{M} \quad 165 \text { moles } \mathrm{SO}_{3}
$$

7. If at equilibrium $\left[\mathrm{H}_{2}\right]=0.200 \mathrm{M}$ and $\left[\mathrm{I}_{2}\right]=0.200 \mathrm{M}$ and $\mathrm{Keq}=55.6$ at $250^{\circ} \mathrm{C}$, calculate the equilibrium concentration of HI .

$$
\begin{aligned}
& \mathbf{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \\
& {[\mathrm{HI}]=1.49 \mathrm{M}}
\end{aligned}
$$

8. 1.60 moles $\mathrm{CO}, 1.60$ moles $\mathrm{H}_{2} \mathrm{O}, 4.00$ moles $\mathrm{CO}_{2}, 4.00$ moles H_{2} are found in a 8.00 L container at $690^{\circ} \mathrm{C}$ at equilibrium.
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
Calculate the value of the equilibrium constant.
