6.2 PERIODIC TRENDS #### **ATOMIC SIZE** | Definite Size | Vs. Estimated Size | |--|--| | Definite Size | Estimated Size | | Definite boundaries of an object Eg. Marbles | Possible boundaries with approximations | | | Eg. E- clouds where e- spend 90% of their time | # **ATOMIC SIZE TREND** - 1. As enr levels (n) $\uparrow \rightarrow e^-$ are further from the nucleus \rightarrow atom size \uparrow - 2. When e^- feel nucleus pull (effective nuclear charge) $\rightarrow e^-$ cloud is closer to nucleus \rightarrow atom size \clubsuit # #### Example: $$\begin{array}{l} \text{Li } (1s^22s^1) \\ \text{Na } (1s^22s^22p^63s^1) \\ \text{K } (1s^22s^22p^63s^23p^64s^1) \\ \text{Rb } (1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1) \\ \text{Cs } (\\ \text{Fr } (\end{array}$$ #### **IONIC SIZE TREND** -Ionic radii of -ve ions > their neutral atomic radii. →Ionic radii of -ve ions ↑ as the -ve charge ↑. -Ionic radii of +ve ions < their neutral atomic radii. →Ionic radii of +ve ions \blacksquare as the +ve charge \blacksquare . Example: Same # of e⁻; diff # of p⁺ and n^o $N^{3-} > O^{2-} > F^- > Ne > Na^+ > Mg^{2+} > Al^{3+}$ #### **IONIZATION ENERGY TREND** **Ionization Energy** (IE): the minimum enr required to remove an e⁻ from a (g) atom or ion Large atom: Nucleus has a ♣hold on e **↓** IE Small atom: Nucleus has a 1 hold on e **↑** IE # Increasing Ionization Energy Metals: **↓**IE Lose e | H
H
Hodogoa
1,00794 | | | | | | | | | | | | | | | | | He | |------------------------------|-------------------|----------------------|-------------------------|---------------------|--------------------|--------------------|----------------------|----------------------|---------------------|-------------------|------------------|----------------------|----------------|------------------------|---------|------------------------|-----------------| | 3 | - 4 | 1 | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li | Be | | | | | | | | | | | В | C | N | O | F | Ne | | 6.94L | 9.012182 | 6 | | | | | | | | | | 10.811 | 12,0107 | 14,00674 | 15.9994 | Plaintin
18,9984032 | 20,1797 | | 11 | 12 | 1 | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | Al | Si | P | S | Cl | Ar | | 308/am
12.999778 | 24.3050 | | | | | | | | | | | 26.981538 | 28.0855 | 7hoptors:
30.973761 | 32.066 | 35.4527 | 39.948 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K | Ca | Se | Ti | v | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.0983 | 40.078 | 5candum
64.955910 | 47,867 | 50.9415 | 51,9961 | 54.938049 | 55,845 | 58,933200 | 58,6934 | 63,546 | 65.39 | 69,723 | 72.61 | 74.92160 | T8.96 | 79.904 | 83.80 | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | Rb | Sr | Y | Zr | Nb | Mo | Te | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | 1 | Xe | | Rabidium
85.4678 | Smootum
87.62 | Vitrium
88,90585 | 70000mm
91.224 | Notium
92,90638 | Mohdoum
95,94 | Technosium
(98) | Retheniors
101.07 | Rhodium
102,90550 | Polladum
106.42 | 58vir
107.8682 | 112.411 | 114.818 | Tin
118,710 | 121,760 | 127.60 | 126,90447 | Xenos
131.29 | | 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | .78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | Cessum
132,90545 | Barnes
137,327 | 138 9055 | Hafman
178.49 | Tamaton
180,9479 | Tungsten
183,84 | Rhoseum
186,207 | Desirate
190.23 | 192.217 | Platinum
195,078 | Gell
196,96655 | Manage
200.59 | Thefices
204 3833 | 1 red
207.2 | Bosoth
208 98038 | (209) | 1210) | Radon
(222) | | 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 500000 | 2.202 | -22.5 | 2000 | | Fr | Ra | Ac | Rf | Db | Sg | Bh | Hs | Mt | | 05.00 | C.50010 | | 1170007-0 | | | | | | (223) | Radium
(226) | Actinium
(227) | Rotherfordners
(261) | (262) | Suborgium
(263) | (262) | (265) | (266) | (209) | (272) | (277) | | | | | | | Non-metals: ↑IE Gain e⁻ # **Exceptions to IONIZATION ENERGY TREND** Nitrogen & Oxygen N: larger atom, but \uparrow IE $\frac{\uparrow \downarrow}{1s} = \frac{\uparrow \downarrow}{2s} = \frac{\uparrow \downarrow}{2p}$ O: smaller atom, but \$\int\$IE 1s 2s 2p ### **ELECTRONEGATIVITY TREND** **Electronegativity**: Relative ability of a bonded atom to attract shared e⁻ to itself #### INCREASING ELECTRONEGATIVITY | H
H
Hydrogen
1.00794 | | | | | | | | | | | | | | | | | He | |-------------------------------|--------------------------|-----------------------------|-----------------------------|--------------------------|----------------------------|------------------------------|----------------------------|----------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|---------------------------|----------------------------|-------------------------|--------------------------|-----------------------| | 3 | 4 | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li
tabase
6.941 | Be
Replan
9.012182 | | | | | | | | | | | B
10.811 | Cietea
12,0107 | N
Nanagan
14,00674 | O
000988
15,9994 | F
18,9984032 | Ne
20,1797 | | 11 | 12 | ĺ | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na
Sodium
2,999770 | Mg | | | | | | | | | | | Al
26.981538 | Si
58cm
28.0855 | P
70.973761 | S
Salte
32,066 | CI
CMorene
18,4527 | Ar
Arpm
19.948 | | 19 | 20 | 21 | 22 | 23 | . 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K
Potassium
Va mas i | Ca
Calcium
40.078 | Sc
Scandium
44,955910 | Ti
Titarium
47,867 | V
Vanadien
50.0415 | Cr
Chromical
51,9961 | Mn
Manganose
54.938049 | Fe
los
55,845 | Co
58,933200 | Ni
Nout
58.4034 | Cu
Copper
63.546 | Zn
65.39 | Ga
Gatham
69,723 | Ge
Germanians
72,61 | A8
Attente
24,92160 | Se
Sciences
TR 96 | Br
bosses
79.904 | Kr
Stypon
83,80 | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | - 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | Rb
Rabidium
85,4678 | Strootum
87.62 | Y ****** 58.90585 | Zr
Znovenen
91,224 | Nb
Notion
92,90638 | Mo
Mohamm
95,94 | Tc
Technosium
(98) | Ru
katheniara
101.07 | Rh
Rhodium
102,90550 | Pd
Palladum
106.42 | Ag
Silver
107,8682 | Cd
Calmium
112,411 | In
Intern
114.818 | Sn
118,710 | Sb
Antoning
121,760 | Te
Telutum
127,60 | I
fodou
126,90447 | Xe
Xenca
131.29 | | 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | .78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs
Common
32 90545 | Ba
Station
137,327 | La
tantanan
138.9055 | Hf
Halman
178.49 | Ta
Tambus
180,9479 | W
Tangsters
183,84 | Re
House
186,207 | Os
0000000
190.23 | Ir
192.217 | Pt
Plane
195,078 | Au
196,96655 | Hg
Marine
200,59 | TI
The State
204 3833 | Pb
1.red
207.2 | Bi
(female
208 98038 | Po
(209) | At
(210) | Rn
(222) | | 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 0)11/0000 | | -178.05 | | | Fr
Function
(223) | Ra
Radium
(226) | Ac
Actions
(227) | Rf
Retherfordum
(261) | Db
Dubnicas
(262) | Sg
Suborpus
(263) | Bh
Boleson
(202) | Hs
Harrison
(265) | Mt
Mension
(266) | (269) | (272) | (277) | | | | | | |